<< problem 102 - Triangle containment Pandigital Fibonacci ends - problem 104 >>

# Problem 103: Special subset sums: optimum

Let S(A) represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets,
B and C, the following properties are true:

i. S(B) != S(C); that is, sums of subsets cannot be equal.
ii. If B contains more elements than C then S(B) > S(C).

If S(A) is minimised for a given n, we shall call it an optimum special sum set.
The first five optimum special sum sets are given below.

n = 1: { 1 }
n = 2: { 1, 2 }
n = 3: { 2, 3, 4 }
n = 4: { 3, 5, 6, 7 }
n = 5: { 6, 9, 11, 12, 13 }

It seems that for a given optimum set, A = {a_1, a_2, ... , a_n}, the next optimum set is of the form B = {b, a_1+b, a_2+b, ... ,a_n+b}, where b is the "middle" element on the previous row.

By applying this "rule" we would expect the optimum set for n = 6 to be A = { 11, 17, 20, 22, 23, 24 }, with S(A) = 117.
However, this is not the optimum set, as we have merely applied an algorithm to provide a near optimum set.
The optimum set for n = 6 is A = { 11, 18, 19, 20, 22, 25 }, with S(A) = 115 and corresponding set string: 111819202225.

Given that A is an optimum special sum set for n = 7, find its set string.

NOTE: This problem is related to Problem 105 and Problem 106.

# My Algorithm

search recursively produces all ascending sequences where all elements are between minElement and maxElement.

check returns true if the set is "special" by analyzing all subsets:
each number is either part or not part of a subset. That can be encoding by a single bit which is 0 (no) or 1 (yes).
Then there are 2^size combinations → I just run a counter named mask from 0000000 to 1111111
(actually, 0000000 represents the empty set and can be skipped).

For each sum I encounter along the way, I set a bit in sums. It must never be set twice (first rule).
Moreover, I track the lower and highest sum for each number of elements.
If the highest sum of all n-element subsets is higher than then lowest sum of (n+1)-subsets then rule 2 was violated.

All successfully verified sequences are stored in an ordered set solution and the first one is printed.

## Modifications by HackerRank

My simple brute-force approach produces only time-outs.
There is a certain generating function I haven't fully figured out. All I see is that x[2n+1] = x[2n] and x[2m] = x[2m-1] - ?.

# Interactive test

You can submit your own input to my program and it will be instantly processed at my server:

Input data (separated by spaces or newlines):
Note: Enter the size of the set

This is equivalent to
echo 6 | ./103

Output:

(please click 'Go !')

Note: the original problem's input 7 cannot be entered
because just copying results is a soft skill reserved for idiots.

(this interactive test is still under development, computations will be aborted after one second)

# My code

… was written in C++11 and can be compiled with G++, Clang++, Visual C++. You can download it, too.

The code contains #ifdefs to switch between the original problem and the Hackerrank version.
Enable #ifdef ORIGINAL to produce the result for the original problem (default setting for most problems).

       #define ORIGINAL
#ifdef  ORIGINAL

#include <iostream>
#include <vector>
#include <map>

typedef std::vector<unsigned int> Sequence;
std::map<unsigned int, Sequence> solutions;

// number of elements in full set
unsigned int finalSize;
// lower limit for the smallest element
unsigned int minElement;
// upper limit for the biggest element
unsigned int maxElement;

// return true if sequence is special
bool check(const Sequence& sequence)
{
// sum of all elements
unsigned int fullSum = 0;
for (auto x : sequence)
fullSum += x;

// mark each generated sum as true, no collisions allowed
std::vector<bool> sums(fullSum + 1, false);

// track the lowest and highest sum for each subset size
std::vector<unsigned int> maxSum(sequence.size() + 1, 0);
std::vector<unsigned int> minSum(sequence.size() + 1, fullSum + 1);
minSum = maxSum = 0; // empty set

unsigned int fullMask = (1 << sequence.size()) - 1;

// 2^elements iterations (actually, I ignore the empty set)
{
unsigned int sum  = 0;
unsigned int size = 0;
for (unsigned int element = 0; element < sequence.size(); element++)
{
// use that element ?
unsigned int bit = 1 << element;
if ((mask & bit) == 0)
continue;

sum += sequence[element];
// count subset size
size++;
}

// two subsets share the same sum ?
if (sums[sum])
return false;
sums[sum] = true;

// adjust lowest and highest sum of current subset
if (minSum[size] > sum)
minSum[size] = sum;
if (maxSum[size] < sum)
maxSum[size] = sum;
}

// make sure that no set will fewer elements has a higher sum
for (size_t i = 1; i < sequence.size(); i++)
if (maxSum[i] > minSum[i + 1])
return false;

// yes, have another solution
solutions[fullSum] = sequence;
return true;
}

// enumerate all sequences where each number is between minElement and maxElement and a_i > a_j if i > j
void search(Sequence& sequence) // manipulate in-place
{
// enough elements ? check whether it is "special"
if (sequence.size() == finalSize)
{
check(sequence);
return;
}

// all numbers which are bigger than the predecessor
auto last = sequence.empty() ? minElement - 1 : sequence.back(); // minus 1 because last always adds 1
for (unsigned int i = last + 1; i <= maxElement; i++)
{
sequence.push_back(i);

// go deeper ...
search(sequence);

sequence.pop_back();
}
}

int main()
{
// read set size
std::cin >> finalSize;

// crude heuristics for the lower and upper limits
minElement = 1;
maxElement = 10;
if (finalSize >= 5)
{
maxElement = finalSize * finalSize;
minElement = maxElement / 4;
}

Sequence empty;
search(empty);

// n = 1: {  1 }
// n = 2: {  1,  2 }
// n = 3: {  2,  3,  4 }
// n = 4: {  3,  5,  6,  7 }
// n = 5: {  6,  9, 11, 12, 13 }
// n = 6: { 11, 18, 19, 20, 22, 25 }
for (auto s : solutions)
{
for (auto x : s.second)
std::cout << x;
break;
}

return 0;
}

#else

// heavily modified Hackerrank problem

#include <iostream>
#include <vector>

typedef std::vector<unsigned int> Sequence;

// apply near-optimal algorithm to increase sequence by one element
// my algorithm builds the sequence in reverse
void next(Sequence& sequence) // modify in-place
{
auto middle = sequence[(sequence.size() - 1) / 2];
for (auto& x : sequence)
x = (x + middle) % 1000000007;
sequence.push_back(middle);
}

int main()
{
unsigned int length;
std::cin >> length;

Sequence sequence = { 1 };
sequence.reserve(length);
for (unsigned int i = 2; i <= length; i++)
next(sequence);

for (auto i = sequence.rbegin(); i != sequence.rend(); i++)
std::cout << *i << " ";
std::cout << std::endl;
return 0;
}

#endif


This solution contains 31 empty lines, 29 comments and 9 preprocessor commands.

# Benchmark

The correct solution to the original Project Euler problem was found in 4.3 seconds on an Intel® Core™ i7-2600K CPU @ 3.40GHz.
(compiled for x86_64 / Linux, GCC flags: -O3 -march=native -fno-exceptions -fno-rtti -std=gnu++11 -DORIGINAL)

See here for a comparison of all solutions.

Note: interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without -DORIGINAL.

# Changelog

May 16, 2017 submitted solution

# Hackerrank

My code solves 1 out of 31 test cases (score: 0%)

I failed 0 test cases due to wrong answers and 30 because of timeouts

# Difficulty

Project Euler ranks this problem at 45% (out of 100%).

Hackerrank describes this problem as easy.

Note:
Hackerrank has strict execution time limits (typically 2 seconds for C++ code) and often a much wider input range than the original problem.
In my opinion, Hackerrank's modified problems are usually a lot harder to solve. As a rule thumb: brute-force is rarely an option.

# Heatmap

Please click on a problem's number to open my solution to that problem:

 green solutions solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too yellow solutions score less than 100% at Hackerrank (but still solve the original problem easily) gray problems are already solved but I haven't published my solution yet blue solutions are relevant for Project Euler only: there wasn't a Hackerrank version of it (at the time I solved it) or it differed too much orange problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte red problems are not solved yet but I wrote a simulation to approximate the result or verified at least the given example - usually I sketched a few ideas, too black problems are solved but access to the solution is blocked for a few days until the next problem is published [new] the flashing problem is the one I solved most recently

I stopped working on Project Euler problems around the time they released 617.
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
The 310 solved problems (that's level 12) had an average difficulty of 32.6% at Project Euler and
I scored 13526 points (out of 15700 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.

My username at Project Euler is stephanbrumme while it's stbrumme at Hackerrank.

Look at my progress and performance pages to get more details.

 << problem 102 - Triangle containment Pandigital Fibonacci ends - problem 104 >>
more about me can be found on my homepage, especially in my coding blog.
some names mentioned on this site may be trademarks of their respective owners.
thanks to the KaTeX team for their great typesetting library !