<< problem 182 - RSA encryption | Number Mind - problem 185 >> |
Problem 183: Maximum product of parts
(see projecteuler.net/problem=183)
Let N be a positive integer and let N be split into k equal parts, r = N/k, so that N = r + r + ... + r.
Let P be the product of these parts, P = r * r * ... * r = r^k.
For example, if 11 is split into five equal parts, 11 = 2.2 + 2.2 + 2.2 + 2.2 + 2.2, then P = 2.2^5 = 51.53632.
Let M(N) = P_max for a given value of N.
It turns out that the maximum for N = 11 is found by splitting eleven into four equal parts which leads to P_max = (11/4)^4;
that is, M(11) = 14641/256 = 57.19140625, which is a terminating decimal.
However, for N = 8 the maximum is achieved by splitting it into three equal parts, so M(8) = 512/27, which is a non-terminating decimal.
Let D(N) = N if M(N) is a non-terminating decimal and D(N) = -N if M(N) is a terminating decimal.
For example, sum{D(N)} for 5 <= N <= 100 is 2438.
Find sum{D(N)} for 5 <= N <= 10000.
My Algorithm
My first approach was to have a simple loop running from k = 1 to n:
- find the largest (n/k)^k
- figure out whether (n/k)^k terminates
And Wolfram Alpha confirmed my suspicion: www.wolframalpha.com/input/?i=max((8/n)^n)
M(8) = max((8/n)^n) = e^{8/e} at k = 8/e where e = 2.7182818284..., see en.wikipedia.org/wiki/E_(mathematical_constant)
In general: max((x/n)^n) = e^{n/e} at k = n/e
Unfortunately, n/e isn't an integer and therefore the best k is
k = round(n / 2.718281828)
(that's enough digits of e for this problem)The number (n/k)^k terminates if n/k terminates.
And n/k terminates if the greatest common divisor gcd(n, k) has only 2 and 5 as prime factors (something I learnt in problem 26).
Alternative Approaches
As mentioned before, my initial approach computed all (n/k)^k.
But numbers became huge very fast ... well, I didn't need their "true" value: it's sufficient to have their logarithm because if a < b then log(a) < log(b), too.
In the end I converted (x/n)^n to n log(x/n).
Using round
can be dangerous if not enough digits of e are used. 10 digits are totally fine for that problem, though.
Modifications by HackerRank
I need to cache intermediate result to be able to handle the huge number of input values.
Interactive test
You can submit your own input to my program and it will be instantly processed at my server:
This is equivalent toecho 100 | ./183
Output:
Note: the original problem's input 10000
cannot be entered
because just copying results is a soft skill reserved for idiots.
(this interactive test is still under development, computations will be aborted after one second)
My code
… was written in C++ and can be compiled with G++, Clang++, Visual C++. You can download it, too. Or just jump to my GitHub repository.
The code contains #ifdef
s to switch between the original problem and the Hackerrank version.
Enable #ifdef ORIGINAL
to produce the result for the original problem (default setting for most problems).
#include <iostream>
#include <vector>
#include <cmath>
int main()
{
// five dummy entries
std::vector<long long> cache(5, 0);
#define ORIGINAL
#ifndef ORIGINAL
unsigned int tests = 1;
std::cin >> tests;
while (tests--)
#endif
{
unsigned int limit = 10000;
std::cin >> limit;
auto result = cache.back();
for (unsigned int n = cache.size(); n <= limit; n++)
{
unsigned int k = round(n / 2.718281828);
// terminating only if n/k has only prime factors 2 and 5
while (k % 5 == 0)
k /= 5;
while (k % 2 == 0)
k /= 2;
if (n % k == 0)
result -= n;
else
result += n;
// cache intermediate results, too (needed for Hackerrank only)
cache.push_back(result);
}
// display result
std::cout << cache[limit] << std::endl;
}
return 0;
}
This solution contains 8 empty lines, 4 comments and 6 preprocessor commands.
Benchmark
The correct solution to the original Project Euler problem was found in less than 0.01 seconds on an Intel® Core™ i7-2600K CPU @ 3.40GHz.
(compiled for x86_64 / Linux, GCC flags: -O3 -march=native -fno-exceptions -fno-rtti -std=gnu++11 -DORIGINAL
)
See here for a comparison of all solutions.
Note: interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without -DORIGINAL
.
Changelog
June 13, 2017 submitted solution
June 13, 2017 added comments
July 28, 2017 modified to solve Hackerrank, too
Hackerrank
see https://www.hackerrank.com/contests/projecteuler/challenges/euler183
My code solves 11 out of 11 test cases (score: 100%)
Difficulty
Project Euler ranks this problem at 45% (out of 100%).
Hackerrank describes this problem as easy.
Note:
Hackerrank has strict execution time limits (typically 2 seconds for C++ code) and often a much wider input range than the original problem.
In my opinion, Hackerrank's modified problems are usually a lot harder to solve. As a rule thumb: brute-force is rarely an option.
Links
projecteuler.net/thread=183 - the best forum on the subject (note: you have to submit the correct solution first)
Code in various languages:
Python blog.dreamshire.com/project-euler-183/
Python github.com/steve98654/ProjectEuler/blob/master/183.py
C++ github.com/Meng-Gen/ProjectEuler/blob/master/183.cc (written by Meng-Gen Tsai)
C++ github.com/roosephu/project-euler/blob/master/183.cpp (written by Yuping Luo)
C++ github.com/smacke/project-euler/blob/master/cpp/183.cpp (written by Stephen Macke)
C github.com/LaurentMazare/ProjectEuler/blob/master/e183.c (written by Laurent Mazare)
Java github.com/HaochenLiu/My-Project-Euler/blob/master/183.java (written by Haochen Liu)
Java github.com/thrap/project-euler/blob/master/src/Java/Problem183.java (written by Magnus Solheim Thrap)
Go github.com/frrad/project-euler/blob/master/golang/Problem183.go (written by Frederick Robinson)
Perl github.com/shlomif/project-euler/blob/master/project-euler/183/euler-183.pl (written by Shlomi Fish)
Those links are just an unordered selection of source code I found with a semi-automatic search script on Google/Bing/GitHub/whatever.
You will probably stumble upon better solutions when searching on your own.
Maybe not all linked resources produce the correct result and/or exceed time/memory limits.
Heatmap
Please click on a problem's number to open my solution to that problem:
green | solutions solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too | |
yellow | solutions score less than 100% at Hackerrank (but still solve the original problem easily) | |
gray | problems are already solved but I haven't published my solution yet | |
blue | solutions are relevant for Project Euler only: there wasn't a Hackerrank version of it (at the time I solved it) or it differed too much | |
orange | problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte | |
red | problems are not solved yet but I wrote a simulation to approximate the result or verified at least the given example - usually I sketched a few ideas, too | |
black | problems are solved but access to the solution is blocked for a few days until the next problem is published | |
[new] | the flashing problem is the one I solved most recently |
I stopped working on Project Euler problems around the time they released 617.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |
76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 |
126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 |
176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |
226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 |
251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 |
276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |
301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 |
326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 |
351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 |
376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 |
401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 |
426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 |
451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 |
476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 |
501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 |
526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 |
551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 |
576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 |
601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 |
626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 |
651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 |
676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 |
701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 |
I scored 13526 points (out of 15700 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.
My username at Project Euler is stephanbrumme while it's stbrumme at Hackerrank.
Look at my progress and performance pages to get more details.
Copyright
I hope you enjoy my code and learn something - or give me feedback how I can improve my solutions.
All of my solutions can be used for any purpose and I am in no way liable for any damages caused.
You can even remove my name and claim it's yours. But then you shall burn in hell.
The problems and most of the problems' images were created by Project Euler.
Thanks for all their endless effort !!!
<< problem 182 - RSA encryption | Number Mind - problem 185 >> |