<< problem 64 - Odd period square roots | Diophantine equation - problem 66 >> |

# Problem 65: Convergents of e

(see projecteuler.net/problem=65)

The square root of 2 can be written as an infinite continued fraction.

sqrt{2} = 1 + dfrac{1}{2 + dfrac{1}{2 + dfrac{1}{2 + frac{1}{2 + ...}}}}

The infinite continued fraction can be written, sqrt{2} = [1;(2)], (2) indicates that 2 repeats ad infinitum.

In a similar way, sqrt{23} = [4;(1,3,1,8)].

It turns out that the sequence of partial values of continued fractions for square roots provide the best rational approximations.

Let us consider the convergents for sqrt{2}.

1 + dfrac{1}{2} = dfrac{3}{2}

1 + dfrac{1}{2 + dfrac{1}{2}} = dfrac{7}{5}

1 + dfrac{1}{2 + dfrac{1}{2 + dfrac{1}{2}}} = dfrac{17}{12}

1 + dfrac{1}{2 + dfrac{1}{2 + dfrac{1}{2 + dfrac{1}{2}}}} = dfrac{41}{29}

Hence the sequence of the first ten convergents for sqrt{2} are:

1, dfrac{3}{2}, dfrac{7}{5}, dfrac{17}{12}, dfrac{41}{29}, dfrac{99}{70}, dfrac{239}{169}, dfrac{577}{408}, dfrac{1393}{985}, dfrac{3363}{2378}, ...

What is most surprising is that the important mathematical constant,

e = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2k,1, ...].

The first ten terms in the sequence of convergents for e are:

2, 3, dfrac{8}{3}, dfrac{11}{4}, dfrac{19}{7}, dfrac{87}{32}, dfrac{106}{39}, dfrac{193}{71}, dfrac{1264}{465}, dfrac{1457}{536}, ...

The sum of digits in the numerator of the 10th convergent is 1+4+5+7=17.

Find the sum of digits in the numerator of the 100th convergent of the continued fraction for e.

# Algorithm

Let's compare the first 10 numerators and the continuous fractions (values taken from problem statement):

knumeratorcontinuous fraction

121

232

381

4111

5194

6871

71061

81936

912641

1014571

After staring at the numbers for 5 minutes I saw that:

nominator_i = nominator_{i-2} + nominator_{i-1} * fraction_{i-1}

All I have to do is writing a simple `for`

-loop that keeps tracks of the two most recent numerators.

The continuous fraction is 1 if index \mod 3 != 2 and 2k if index \mod 3 == 2.

The numerators can grow pretty fast and exceed 2^64: the numerator for k=100 has 58 decimal digits.

That's why I have to use my `BigNum`

class. The code was used previously in several solutions, too, e.g. problem 56.

There is a minor change: the constant `MaxDigit=10`

was replaced by the highest power-of-10 that is below 2^32.

The only reason is an improved performance (about 10x faster than `MaxDigit = 10`

).

# My code

… was written in C++11 and can be compiled with G++, Clang++, Visual C++. You can download it, too.

#include <iostream>
#include <vector>
// store single digits with lowest digits first
// e.g. 1024 is stored as { 4,2,0,1 }
// only non-negative numbers supported

struct BigNum : public std::vector<unsigned int>
{
// string conversion works only properly when MaxDigit is a power of 10
static const unsigned int MaxDigit = 1000000000;
// store a non-negative number
BigNum(unsigned long long x = 0)
{
do
{
push_back(x % MaxDigit);
x /= MaxDigit;
} while (x > 0);
}
// add two big numbers
BigNum operator+(const BigNum& other) const
{
auto result = *this;
// add in-place, make sure it's big enough
if (result.size() < other.size())
result.resize(other.size(), 0);
unsigned int carry = 0;
for (size_t i = 0; i < result.size(); i++)
{
carry += result[i];
if (i < other.size())
carry += other[i];
else
if (carry == 0)
return result;
if (carry < MaxDigit)
{
// no overflow
result[i] = carry;
carry = 0;
}
else
{
// yes, we have an overflow
result[i] = carry - MaxDigit;
carry = 1;
}
}
if (carry > 0)
result.push_back(carry);
return result;
}
// multiply a big number by an integer
BigNum operator*(unsigned int factor) const
{
unsigned long long carry = 0;
auto result = *this;
for (auto& i : result)
{
carry += i * (unsigned long long)factor;
i = carry % MaxDigit;
carry /= MaxDigit;
}
// store remaining carry in new digits
while (carry > 0)
{
result.push_back(carry % MaxDigit);
carry /= MaxDigit;
}
return result;
}
};
int main()
{
unsigned int lastIndex;
std::cin >> lastIndex;
// to save memory we dont keep all numerators, only the latest three
BigNum numerators[3] = { 0, // dummy, will be overwritten immediately
1, // always 1
2 }; // the first number of the continuous fraction ("before the semicolon")
for (unsigned int index = 2; index <= lastIndex; index++)
{
// e = [2; 1,2,1, 1,4,1, ... 1,2k,1, ...]
unsigned int fractionNumber = 1;
if (index % 3 == 0)
fractionNumber = (index / 3) * 2;
// keep only the latest two numerators
numerators[0] = std::move(numerators[1]);
numerators[1] = std::move(numerators[2]);
// and generate the next one
if (fractionNumber == 1)
numerators[2] = numerators[0] + numerators[1];
else
numerators[2] = numerators[0] + numerators[1] * fractionNumber;
}
// add all digits of the last numerator
unsigned int sum = 0;
for (auto x : numerators[2])
// when MaxDigit != 10 then we have to split into single digits
while (x > 0)
{
sum += x % 10;
x /= 10;
}
std::cout << sum << std::endl;
return 0;
}

This solution contains 16 empty lines, 17 comments and 2 preprocessor commands.

# Interactive test

You can submit your own input to my program and it will be instantly processed at my server:

This is equivalent to`echo 10 | ./65`

Output:

*Note:* the original problem's input `100`

__cannot__ be entered

because just copying results is a soft skill reserved for idiots.

*(this interactive test is still under development, computations will be aborted after one second)*

# Benchmark

The correct solution to the original Project Euler problem was found in **less than 0.01** seconds on a Intel® Core™ i7-2600K CPU @ 3.40GHz.

(compiled for x86_64 / Linux, GCC flags: `-O3 -march=native -fno-exceptions -fno-rtti -std=c++11 -DORIGINAL`

)

See here for a comparison of all solutions.

**Note:** interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without `-DORIGINAL`

.

# Changelog

March 8, 2017 submitted solution

April 29, 2017 added comments

# Hackerrank

see https://www.hackerrank.com/contests/projecteuler/challenges/euler065

My code solved **9** out of **9** test cases (score: **100%**)

# Difficulty

Project Euler ranks this problem at **15%** (out of 100%).

Hackerrank describes this problem as **easy**.

*Note:*

Hackerrank has strict execution time limits (typically 2 seconds for C++ code) and often a much wider input range than the original problem.

In my opinion, Hackerrank's modified problems are usually a lot harder to solve. As a rule thumb: brute-force is never an option.

# Links

projecteuler.net/thread=65 - **the** best forum on the subject (*note:* you have to submit the correct solution first)

Code in various languages:

Python: www.mathblog.dk/project-euler-65-numerator-continued-fraction-e/ (written by Kristian Edlund)

Java: github.com/nayuki/Project-Euler-solutions/blob/master/java/p065.java (written by Nayuki)

Go: github.com/frrad/project-euler/blob/master/golang/Problem065.go (written by Frederick Robinson)

Scala: github.com/samskivert/euler-scala/blob/master/Euler065.scala (written by Michael Bayne)

# Heatmap

green problems solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too.

yellow problems score less than 100% at Hackerrank (but still solve the original problem).

gray problems are already solved but I haven't published my solution yet.

blue problems are already solved and there wasn't a Hackerrank version of it (at the time I solved it) or I didn't care about it because it differed too much.

*Please click on a problem's number to open my solution to that problem:*

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |

51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |

76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 |

126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |

151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 |

176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |

<< problem 64 - Odd period square roots | Diophantine equation - problem 66 >> |