Problem 122: Efficient exponentiation

(see projecteuler.net/problem=122)

The most naive way of computing n^15 requires fourteen multiplications:
n * n * ... * n = n^15

But using a "binary" method you can compute it in six multiplications:

n * n = n^2
n^2 * n^2 = n^4
n^4 * n^4 = n^8
n^8 * n^4 = n^12
n^12 * n^2 = n^14
n^14 * n = n^15

However it is yet possible to compute it in only five multiplications:

n * n = n^2
n^2 * n = n^3
n^3 * n^3 = n^6
n^6 * n^6 = n^12
n^12 * n^3 = n^15

We shall define m(k) to be the minimum number of multiplications to compute n^k; for example m(15) = 5.

For 1 <= k <= 200, find sum{m(k)}.

My Algorithm

It took me quite some time to figure out a fast solution.
I realized pretty soon that I should generate a sequence which contains the exponents where a_i = a_k + a_l and i > k >= l.
A sequence for n^15 is { 1, 2, 3, 6, 12, 15 }. Using pen and paper I also found { 1, 2, 4, 5, 10, 15 }.
Therefore there is not one unique optimal solution for each exponent but there can be multiple.

First I tried an iterative depth-first search, where I append any combination of a_k + a_l to a list which starts with { 1 }.
The number of combinations was huge - too much for my little computer ...
Then I discovered that this problem is called "Addition chain" and there is substantial information available: en.wikipedia.org/wiki/Addition_chain
A list of chain lengths can be downloaded, too: wwwhomes.uni-bielefeld.de/achim/addition_chain.html

Especially the Brauer chain caught my eye: for n <= 2500 you find the correct solution by restricting k = i - 1.
In plain English: add every exponent to the biggest one only.

search is a recursive depth-first search, limited by maxDepth:
- it aborts immediately if search depth was exhausted, e.g. the current chain is longer than allowed
- it computes the sum of any element and the last element and returns true if it matches the exponent
- else it appends the sum and has to go deeper
The code runs about twice as fast when combining "high" numbers first: instead of a_0 + a_{last}, a_1 + a_{last}, ... a_{last} + a_{last} I start the other way around.

findChain slowly increases the search depth search returns a solution.

Modifications by HackerRank

Each solution has to be printed in a human-readable format.
Multiple test cases want you to compute the same formulas, therefore a small cache was added.

My code

… was written in C++11 and can be compiled with G++, Clang++, Visual C++. You can download it, too.

The code contains #ifdefs to switch between the original problem and the Hackerrank version.
Enable #ifdef ORIGINAL to produce the result for the original problem (default setting for most problems).

#include <iostream>
#include <vector>
#include <map>
 
//#define ORIGINAL
 
// a single addition chain
typedef std::vector<unsigned int> Chain;
 
// iterative depth-first search of Brauer sequence
bool search(Chain& chain, unsigned int exponent, unsigned int maxDepth)
{
// too deep ?
if (chain.size() > maxDepth)
return false;
 
auto last = chain.back();
for (size_t i = 0; i < chain.size(); i++)
{
//auto sum = chain[i] + last;
auto sum = chain[chain.size() - 1 - i] + last; // try high exponents first => about twice as fast
if (sum == exponent)
return true;
 
chain.push_back(sum);
if (search(chain, exponent, maxDepth))
return true;
 
chain.pop_back();
}
 
return false;
}
 
// increase depth until a solution is found
Chain findChain(unsigned int exponent)
{
// cached ? (needed for Hackerrank only)
static std::map<unsigned int, Chain> cache;
auto lookup = cache.find(exponent);
if (lookup != cache.end())
return lookup->second;
 
// start iterative search
Chain chain;
unsigned int depth = 1;
while (true)
{
// reset chain
chain = { 1 };
// a start search
if (search(chain, exponent, depth))
break;
 
// failed, allow to go one step deeper
depth++;
}
 
cache[exponent] = chain;
return chain;
}
 
// print a single chain in Hackerrank format
void print(const Chain& chain)
{
// number of multiplications
std::cout << (chain.size() - 1) << std::endl;
// print each multiplication
for (size_t i = 1; i < chain.size(); i++)
{
// involved exponents
auto sum = chain[i];
auto add1 = chain[i - 1];
auto add2 = sum - add1;
 
std::cout << "n";
if (add1 > 1)
std::cout << "^" << add1;
std::cout << " * n";
if (add2 > 1)
std::cout << "^" << add2;
std::cout << " = n^" << sum << std::endl;
}
}
 
int main()
{
#ifdef ORIGINAL
 
unsigned int sum = 0;
// find all chains 2..200
for (unsigned int exponent = 2; exponent <= 200; exponent++)
{
auto chain = findChain(exponent);
// sum of all chains' lengths
sum += chain.size();
}
std::cout << sum << std::endl;
 
#else
 
unsigned int tests;
std::cin >> tests;
while (tests--)
{
unsigned int exponent;
std::cin >> exponent;
 
// compute one chain (there might be different chains of the same length)
auto chain = findChain(exponent);
// append the exponent, which is not part of the chain yet
chain.push_back(exponent);
// and display
print(chain);
}
 
#endif
 
return 0;
}

This solution contains 20 empty lines, 20 comments and 6 preprocessor commands.

Interactive test

You can submit your own input to my program and it will be instantly processed at my server:

This live test is based on the Hackerrank problem.

Number of test cases (1-5):

Input data (separated by spaces or newlines):
Note: Enter an exponent and one optimal solution (addition chain) will be displayed

This is equivalent to
echo "1 15" | ./122

Output:

(please click 'Go !')

(this interactive test is still under development, computations will be aborted after one second)

Benchmark

The correct solution to the original Project Euler problem was found in 0.11 seconds on a Intel® Core™ i7-2600K CPU @ 3.40GHz.
(compiled for x86_64 / Linux, GCC flags: -O3 -march=native -fno-exceptions -fno-rtti -std=c++11 -DORIGINAL)

See here for a comparison of all solutions.

Note: interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without -DORIGINAL.

Changelog

May 15, 2017 submitted solution
May 15, 2017 added comments

Hackerrank

see https://www.hackerrank.com/contests/projecteuler/challenges/euler122

My code solves 3 out of 3 test cases (score: 100%)

Difficulty

40% Project Euler ranks this problem at 40% (out of 100%).

Hackerrank describes this problem as easy.

Note:
Hackerrank has strict execution time limits (typically 2 seconds for C++ code) and often a much wider input range than the original problem.
In my opinion, Hackerrank's modified problems are usually a lot harder to solve. As a rule thumb: brute-force is rarely an option.

Heatmap

green problems solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too.
yellow problems score less than 100% at Hackerrank (but still solve the original problem).
gray problems are already solved but I haven't published my solution yet.
blue problems are solved and there wasn't a Hackerrank version of it at the time I solved it or I didn't care about it because it differed too much.
red problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte.

Please click on a problem's number to open my solution to that problem:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
The 235 solved problems (level 9) had an average difficulty of 29.1% at Project Euler and
I scored 13,183 points (out of 15300 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.
Look at my progress and performance pages to get more details.

My username at Project Euler is stephanbrumme while it's stbrumme at Hackerrank.

more about me can be found on my homepage, especially in my coding blog.
some names mentioned on this site may be trademarks of their respective owners.
thanks to the KaTeX team for their great typesetting library !