<< problem 51 - Prime digit replacements | Combinatoric selections - problem 53 >> |
Problem 52: Permuted multiples
(see projecteuler.net/problem=52)
It can be seen that the number, 125874, and its double, 251748, contain exactly the same digits, but in a different order.
Find the smallest positive integer, x, such that 2x, 3x, 4x, 5x, and 6x, contain the same digits.
My Algorithm
My function fingerprint
counts how often each digit occurs and produces an integer (which may have up to 10 digits).
The n-th decimal digit of the result represents how often the digit n occurs in the input, e.g.
fingerprint(454430) = 131001
because 5
appears once, 4
three times, 3
once, no 2
, no 1
and a single zero.
fingerprint
has the nice property that two number with the same fingerprint are a permutation of each other
(phrased in the words of the problem statement: "contain the same digits").
Note: my fingerprint technique allows only up 9 identical digits which is okay because x
has at most seven digits.
I compute the fingerprint of each number i
, beginning with 1, and multiply it by 2, 3, 4, ...
If the product still has the same fingerprint, then it is a permutation.
Modifications by HackerRank
The number of multiples can be adjusted from 2 to 6 (the latter being the default value for the original problem).
Note
The is plenty of room for optimization. For example, if maxMultiple >= 5
then the first digit of i
must be a 1
.
Interactive test
You can submit your own input to my program and it will be instantly processed at my server:
This live test is based on the Hackerrank problem.
This is equivalent toecho "125875 2" | ./52
Output:
(this interactive test is still under development, computations will be aborted after one second)
My code
… was written in C++11 and can be compiled with G++, Clang++, Visual C++. You can download it, too.
The code contains #ifdef
s to switch between the original problem and the Hackerrank version.
Enable #ifdef ORIGINAL
to produce the result for the original problem (default setting for most problems).
#include <iostream>
// I generate a "fingerprint" for each number:
// e.g. a fingerprint of 40231 means that the parameter had
// 1 zero
// 3 ones
// 2 threes
// no fours
// 4 fives
// and no sixes, sevens, ...
unsigned long long fingerprint(unsigned int x)
{
unsigned long long result = 0;
while (x > 0)
{
// extract right-most digit
auto digit = x % 10;
x /= 10;
// add 10^digit
unsigned long long pos = 1;
for (unsigned int i = 1; i <= digit; i++)
pos *= 10;
result += pos;
}
return result;
}
int main()
{
// the result can be found with 1000000 6
unsigned int maxNumber = 1000000;
unsigned int maxMultiple = 6;;
std::cin >> maxNumber >> maxMultiple;
// look at all numbers
for (unsigned int i = 1; i <= maxNumber; i++)
{
// initial fingerprint
auto id = fingerprint(i);
bool found = true;
for (unsigned int multiple = 2; multiple <= maxMultiple; multiple++)
// mismatch ? => abort
if (id != fingerprint(i * multiple))
{
found = false;
break;
}
// print result
if (found)
{
//#define ORIGINAL
#ifdef ORIGINAL
std::cout << i << std::endl;
return 0;
#endif
for (unsigned int multiple = 1; multiple <= maxMultiple; multiple++)
std::cout << (i * multiple) << " ";
std::cout << std::endl;
}
}
return 0;
}
This solution contains 10 empty lines, 16 comments and 3 preprocessor commands.
Benchmark
The correct solution to the original Project Euler problem was found in 0.02 seconds on an Intel® Core™ i7-2600K CPU @ 3.40GHz.
(compiled for x86_64 / Linux, GCC flags: -O3 -march=native -fno-exceptions -fno-rtti -std=gnu++11 -DORIGINAL
)
See here for a comparison of all solutions.
Note: interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without -DORIGINAL
.
Changelog
February 27, 2017 submitted solution
April 20, 2017 added comments
Hackerrank
see https://www.hackerrank.com/contests/projecteuler/challenges/euler052
My code solves 10 out of 10 test cases (score: 100%)
Difficulty
Project Euler ranks this problem at 5% (out of 100%).
Hackerrank describes this problem as easy.
Note:
Hackerrank has strict execution time limits (typically 2 seconds for C++ code) and often a much wider input range than the original problem.
In my opinion, Hackerrank's modified problems are usually a lot harder to solve. As a rule thumb: brute-force is rarely an option.
Similar problems at Project Euler
Problem 49: Prime permutations
Note: I'm not even close to solving all problems at Project Euler. Chances are that similar problems do exist and I just haven't looked at them.
Links
projecteuler.net/thread=52 - the best forum on the subject (note: you have to submit the correct solution first)
Code in various languages:
C# www.mathblog.dk/project-euler-52-integer-same-digits/ (written by Kristian Edlund)
Python github.com/nayuki/Project-Euler-solutions/blob/master/python/p052.py (written by Nayuki)
Python github.com/sefakilic/euler/blob/master/python/euler052.py (written by Sefa Kilic)
C++ github.com/HaochenLiu/My-Project-Euler/blob/master/052.cpp (written by Haochen Liu)
Java github.com/dcrousso/ProjectEuler/blob/master/PE052.java (written by Devin Rousso)
Java github.com/nayuki/Project-Euler-solutions/blob/master/java/p052.java (written by Nayuki)
Java github.com/thrap/project-euler/blob/master/src/Java/Problem52.java (written by Magnus Solheim Thrap)
Javascript github.com/dsernst/ProjectEuler/blob/master/52 Permuted multiples.js (written by David Ernst)
Go github.com/frrad/project-euler/blob/master/golang/Problem052.go (written by Frederick Robinson)
Mathematica github.com/nayuki/Project-Euler-solutions/blob/master/mathematica/p052.mathematica (written by Nayuki)
Mathematica github.com/steve98654/ProjectEuler/blob/master/052.nb
Clojure github.com/guillaume-nargeot/project-euler-clojure/blob/master/src/project_euler/problem_052.clj (written by Guillaume Nargeot)
Clojure github.com/rm-hull/project-euler/blob/master/src/euler052.clj (written by Richard Hull)
Scala github.com/samskivert/euler-scala/blob/master/Euler052.scala (written by Michael Bayne)
Rust github.com/gifnksm/ProjectEulerRust/blob/master/src/bin/p052.rs
Sage github.com/roosephu/project-euler/blob/master/52.sage (written by Yuping Luo)
Those links are just an unordered selection of source code I found with a semi-automatic search script on Google/Bing/GitHub/whatever.
You will probably stumble upon better solutions when searching on your own. Maybe not all linked resources produce the correct result and/or exceed time/memory limits.
Heatmap
Please click on a problem's number to open my solution to that problem:
green | solutions solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too | |
yellow | solutions score less than 100% at Hackerrank (but still solve the original problem easily) | |
gray | problems are already solved but I haven't published my solution yet | |
blue | solutions are relevant for Project Euler only: there wasn't a Hackerrank version of it (at the time I solved it) or it differed too much | |
orange | problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte | |
red | problems are not solved yet but I wrote a simulation to approximate the result or verified at least the given example - usually I sketched a few ideas, too | |
black | problems are solved but access to the solution is blocked for a few days until the next problem is published | |
[new] | the flashing problem is the one I solved most recently |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |
76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 |
126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 |
176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |
226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 |
251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 |
276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |
301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 |
326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 |
351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 |
376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 |
401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 |
426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 |
451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 |
476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 |
501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 |
526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 |
551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 |
576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 |
601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 |
626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 |
I scored 13526 points (out of 15700 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.
My username at Project Euler is stephanbrumme while it's stbrumme at Hackerrank.
Look at my progress and performance pages to get more details.
Copyright
I hope you enjoy my code and learn something - or give me feedback how I can improve my solutions.
All of my solutions can be used for any purpose and I am in no way liable for any damages caused.
You can even remove my name and claim it's yours. But then you shall burn in hell.
The problems and most of the problems' images were created by Project Euler.
Thanks for all their endless effort !!!
<< problem 51 - Prime digit replacements | Combinatoric selections - problem 53 >> |