Problem 67: Maximum path sum II

(see projecteuler.net/problem=67)

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

3
7 4
2 4 6
8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom in triangle.txt (right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows.

NOTE: This is a much more difficult version of Problem 18. It is not possible to try every route to solve this problem, as there are 299 altogether!
If you could check one trillion (10^12) routes every second it would take over twenty billion years to check them all. There is an efficient algorithm to solve it. ;o)

My Algorithm

The algorithm and code were copied from problem 18:

The main idea is to build a data structure similar to the input data:
but instead of just storing the raw input we store the biggest sum up to this point.

All data is processed row-by-row

Of course, the first row consists of a single number and it has no "parents", that means no rows above it.
Therefore the "sum" is the number itself.
This row now becomes my "parent row" called last.

For each element of the next rows I have to find its parents (some have one, some have two),
figure out which parent is bigger and then add the current input to it.
This sum is stored in current.

When a row is fully processed, current becomes last.
When all rows are processed, the largest element in last is the result of the algorithm.

Example:

1
2 3
4 5 6
initialize:
last[0] = 1;

read second line:
current[0] = 2 + last[0] = 3
current[1] = 3 + last[0] = 4
copy current to last (which becomes { 3, 4 })

read third line:
current[0] = 4 + last[0] = 7
current[1] = 5 + max(last[0], last[1]) = 9
current[2] = 6 + last[1] = 10
copy current to last (which becomes { 7, 9, 10 })

finally:
print max(last) = 10

My code

… was written in C++11 and can be compiled with G++, Clang++, Visual C++. You can download it, as well as the input data, too.

The code contains #ifdefs to switch between the original problem and the Hackerrank version.
Enable #ifdef ORIGINAL to produce the result for the original problem (default setting for most problems).

#include <iostream>
#include <vector>
#include <algorithm>
 
int main()
{
unsigned int tests = 1;
unsigned int numRows = 100;
 
//#define ORIGINAL
#ifndef ORIGINAL
std::cin >> tests;
#endif
 
while (tests--)
{
#ifndef ORIGINAL
std::cin >> numRows;
#endif
 
// process input row-by-row
// each time a number is read we add it to the two numbers above it
// choose the bigger sum and store it
// if all rows are finished, find the largest number in the last row
 
// read first line, just one number
std::vector<unsigned int> last(1);
std::cin >> last[0];
 
// read the remaining lines
for (unsigned int row = 1; row < numRows; row++)
{
// prepare array for new row
unsigned int numElements = row + 1;
std::vector<unsigned int> current;
 
// read all numbers of current row
for (unsigned int column = 0; column < numElements; column++)
{
unsigned int x;
std::cin >> x;
 
// find sum of elements in row above (going a half step to the left)
unsigned int leftParent = 0;
// only if left parent is available
if (column > 0)
leftParent = last[column - 1];
 
// find sum of elements in row above (going a half step to the right)
unsigned int rightParent = 0;
// only if right parent is available
if (column < last.size())
rightParent = last[column];
 
// add larger parent to current input
unsigned int sum = x + std::max(leftParent, rightParent);
// and store this sum
current.push_back(sum);
}
 
// row is finished, it become the "parent" row
last = current;
}
 
// find largest sum in final row
std::cout << *std::max_element(last.begin(), last.end()) << std::endl;
}
 
return 0;
}

This solution contains 13 empty lines, 17 comments and 7 preprocessor commands.

Interactive test

You can submit your own input to my program and it will be instantly processed at my server:

This live test is based on the Hackerrank problem.

Input data (separated by spaces or newlines):
Note: Prepend the number of rows (100 for the original problem)

This is equivalent to
echo "" | ./67

Output:

(please click 'Go !')

(this interactive test is still under development, computations will be aborted after one second)

Benchmark

The correct solution to the original Project Euler problem was found in less than 0.01 seconds on a Intel® Core™ i7-2600K CPU @ 3.40GHz.
(compiled for x86_64 / Linux, GCC flags: -O3 -march=native -fno-exceptions -fno-rtti -std=c++11 -DORIGINAL)

See here for a comparison of all solutions.

Note: interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without -DORIGINAL.

Changelog

February 24, 2017 submitted solution
April 26, 2017 added comments

Hackerrank

see https://www.hackerrank.com/contests/projecteuler/challenges/euler067

My code solves 20 out of 20 test cases (score: 100%)

Difficulty

5% Project Euler ranks this problem at 5% (out of 100%).

Hackerrank describes this problem as medium.

Note:
Hackerrank has strict execution time limits (typically 2 seconds for C++ code) and often a much wider input range than the original problem.
In my opinion, Hackerrank's modified problems are usually a lot harder to solve. As a rule thumb: brute-force is rarely an option.

Links

projecteuler.net/thread=67 - the best forum on the subject (note: you have to submit the correct solution first)

Code in various languages:

Python: www.mathblog.dk/project-euler-67-efficient-algorithm-triangle/ (written by Kristian Edlund)
Java: github.com/nayuki/Project-Euler-solutions/blob/master/java/p067.java (written by Nayuki)
Go: github.com/frrad/project-euler/blob/master/golang/Problem067.go (written by Frederick Robinson)
Scala: github.com/samskivert/euler-scala/blob/master/Euler067.scala (written by Michael Bayne)

Heatmap

green problems solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too.
yellow problems score less than 100% at Hackerrank (but still solve the original problem).
gray problems are already solved but I haven't published my solution yet.
blue problems are solved and there wasn't a Hackerrank version of it at the time I solved it or I didn't care about it because it differed too much.
red problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte.

Please click on a problem's number to open my solution to that problem:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
The 233 solved problems (level 9) had an average difficulty of 29.0% at Project Euler and
I scored 12,983 points (out of 15100 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.
Look at my progress and performance pages to get more details.

My username at Project Euler is stephanbrumme while it's stbrumme at Hackerrank.

more about me can be found on my homepage, especially in my coding blog.
some names mentioned on this site may be trademarks of their respective owners.
thanks to the KaTeX team for their great typesetting library !