<< problem 317 - Firecracker | Prime Frog - problem 329 >> |

# Problem 323: Bitwise-OR operations on random integers

(see projecteuler.net/problem=323)

Let y_0, y_1, y_2,... be a sequence of random unsigned 32 bit integers (i.e. 0 <= y_i < 2^32, every value equally likely).

For the sequence x_i the following recursion is given:

x_0 = 0 and

x_i = x_{i-1} | y_{i-1}, for i > 0. ( | is the bitwise-OR operator)

It can be seen that eventually there will be an index N such that x_i = 2^{32}-1 (a bit-pattern of all ones) for all i >= N.

Find the expected value of N.

Give your answer rounded to 10 digits after the decimal point.

# My Algorithm

I evaluate n rounds and find their likelihood of producing the final value.

The "chance of survival" of an unset bit decreases after each round so that the result eventually stabilizes.

I stop once the delta falls below my threshold 10^-11 (one digit more than needed to prevent rounding issues).

A single is zero after a certain number of rounds with probability:

(1) 0.5^{round}

And it became 1 after all those rounds:

(2) 1 - 0.5^{round}

The chance that all 32 bits are 1:

(3) (1 - 0.5^{round})^32

Therefore the chance that at least one out of 32 bits is still zero:

(4) 1 - (1 - 0.5^{round})^32

I keep adding all values of equation (4) until the value of (4) drops below 10^-11.

It takes a little more than 40 iterations to find the correct result.

## Note

Actually, my first step was writing a simple Monte-Carlo simulation to get an approximation of the result.

Of course it's impossible to find all 10 digits after the decimal point (unless you invest a huge amount of time).

The code can still be found in `montecarlo`

(and its helper function `myrand`

).

It's worth mentioning that the results of my Monte-Carlo simulation differed significantly from their true values.

I spent more than an hour trying to find a bug in my "mathematical" approach because I trusted the Monte-Carlo result.

As it turned out, `myrand`

was flawed because the simple LCG algorithm had bad parameters.

When I choose different parameters (from en.wikipedia.org/wiki/Linear_congruential_generator) then everything turned out to be fine.

# My code

… was written in C++11 and can be compiled with G++, Clang++, Visual C++. You can download it, too.

#include <iostream>
#include <iomanip>
#include <cmath>
// 32 bits

unsigned int maxBits = 32;
// ---------- first approach: find a good estimation with Monte-Carlo simulation ----------

// a simple pseudo-random number generator
// (produces the same result no matter what compiler you have - unlike rand() from math.h)

unsigned int myrand()
{
static unsigned long long seed = 0;
seed = 6364136223846793005ULL * seed + 1;
return seed >> 30;
}
// randomized simulation

double montecarlo(unsigned int iterations)
{
// all 32 bits are set
const unsigned int allBits = (1ULL << maxBits) - 1;
unsigned int numSteps = 0;
for (unsigned int i = 0; i < iterations; i++)
{
// start with zero
unsigned int current = 0;
// and repeat until all bits are set
do
{
// and some random bits
current |= myrand() & allBits;
numSteps++;
} while (current != allBits);
}
// return average number of steps until "completion"
return numSteps / double(iterations);
}
// ---------- final approach: solve "smarter" ! ----------

int main()
{
std::cin >> maxBits;
// number of accurate digits
const unsigned int digits = 10;
// 0.00000000001 => one more zero ensures that the last digit is correct even after rounding
const double Epsilon = pow(10.0, -(double)(digits + 1));
// at least one round
double result = 0;
unsigned int round = 0;
// until change is smaller than Epsilon
while (true)
{
// chance of "survival" for a single zero after all those rounds
auto hasZero = pow(0.5, round);
// were all 32 bits flipped from 0 to 1 ?
auto isDone = pow(1 - hasZero, maxBits);
// remaining
auto delta = 1 - isDone;
// enough digits ?
if (delta < Epsilon)
break;
// next iteration
result += delta;
round++; // stop after 42 rounds
}
// display result
std::cout << std::fixed << std::setprecision(digits)
<< result << std::endl;
// run Monte-Carlo simulation
//while (true)
// std::cout << montecarlo(100000000) << std::endl;
return 0;
}

This solution contains 17 empty lines, 24 comments and 3 preprocessor commands.

# Interactive test

You can submit your own input to my program and it will be instantly processed at my server:

This is equivalent to`echo 8 | ./323`

Output:

*Note:* the original problem's input `32`

__cannot__ be entered

because just copying results is a soft skill reserved for idiots.

*(this interactive test is still under development, computations will be aborted after one second)*

# Benchmark

The correct solution to the original Project Euler problem was found in less than 0.01 seconds on a Intel® Core™ i7-2600K CPU @ 3.40GHz.

(compiled for x86_64 / Linux, GCC flags: `-O3 -march=native -fno-exceptions -fno-rtti -std=c++11 -DORIGINAL`

)

See here for a comparison of all solutions.

**Note:** interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without `-DORIGINAL`

.

# Changelog

July 31, 2017 submitted solution

July 31, 2017 added comments

# Difficulty

Project Euler ranks this problem at **20%** (out of 100%).

# Links

projecteuler.net/thread=323 - **the** best forum on the subject (*note:* you have to submit the correct solution first)

# Heatmap

green problems solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too.

yellow problems score less than 100% at Hackerrank (but still solve the original problem).

gray problems are already solved but I haven't published my solution yet.

blue problems are solved and there wasn't a Hackerrank version of it at the time I solved it or I didn't care about it because it differed too much.

red problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte.

*Please click on a problem's number to open my solution to that problem:*

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |

51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |

76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 |

126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |

151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 |

176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |

201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |

226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 |

251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 |

276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |

301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 |

326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 |

351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 |

376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 |

401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 |

426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 |

451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 |

476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 |

501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 |

526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 |

I scored 13,183 points (out of 15300 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.

Look at my progress and performance pages to get more details.

My username at Project Euler is

**stephanbrumme**while it's stbrumme at Hackerrank.

# Copyright

I hope you enjoy my code and learn something - or give me feedback how I can improve my solutions.

All of my solutions can be used for any purpose and I am in no way liable for any damages caused.

You can even remove my name and claim it's yours. But then you shall burn in hell.

The problems and most of the problems' images were created by Project Euler.

Thanks for all their endless effort.

<< problem 317 - Firecracker | Prime Frog - problem 329 >> |