<< problem 119 - Digit power sum | Disc game prize fund - problem 121 >> |
Problem 120: Square remainders
(see projecteuler.net/problem=120)
Let r be the remainder when (a-1)^n + (a+1)^n is divided by a^2.
For example, if a = 7 and n = 3, then r = 42: 6^3 + 8^3 = 728 == 42 mod 49.
And as n varies, so too will r, but for a = 7 it turns out that r_{max} = 42.
For 3 <= a <= 1000, find sum{r_{max}}.
My Algorithm
The binomial expansion (see en.wikipedia.org/wiki/Binomial_theorem) is:
(x+y)^n = {{n}choose{0}} x^{n}y^0 + {{n}choose{1}} x^{n-1}y^1 + ... {{n}choose{n-1}} x^{1}y^{n-1} + {{n}choose{n}} x^{0}y^n
If x=a and y = \pm 1:
(a+1)^n = {{n}choose{0}} a^{n} + {{n}choose{1}} a^{n-1} + {{n}choose{2}} a^{n-2} + ... {{n}choose{n-1}} a^{1} + {{n}choose{n}} a^{0}
(a-1)^n = {{n}choose{0}} a^{n} - {{n}choose{1}} a^{n-1} + {{n}choose{2}} a^{n-2} - ... {{n}choose{n-1}} a^{1} (-1)^{n-1} + {{n}choose{n}} a^{0} (-1)^n
Most of the terms are multiples of a^2. The modulo "removes" them. And keep in mind that a^0 = 1 and {{n}choose{n}} = 1 and {{n}choose{n-1}} = n:
(a+1)^n mod a^2 = na + 1
(a-1)^n mod a^2 = na (-1)^{n-1} + (-1)^n
If n is even then:
((a+1)^n + (a-1)^n) mod a^2 = (na + 1 + na * (-1) + 1) mod a^2 = 2 mod a^2
→ For any even n the result is always 2.
If n is odd then:
((a+1)^n + (a-1)^n) mod a^2 = (na + 1 + na - 1) mod a^2 = 2na mod a^2 = 2n mod a
The maximum n_{max} such that 2n_{max} is as close as possible to a:
2n_{max} = a - 1
n_{max} = dfrac{a - 1}{2}
n_{max} must be an integer, therefore the division is actually an integer division:
n_{max} = \lfloor dfrac{a - 1}{2} \rfloor
And finally the remainder becomes:
r_{max} = 2an_{max} = 2a \lfloor dfrac{a - 1}{2} \rfloor
Modifications by HackerRank
I wrote very dirty code to solve a few test cases. Some test cases time out, some give just a wrong result.
Not very proud of it !
Interactive test
This feature is not available for the current problem.
My code
… was written in C++ and can be compiled with G++, Clang++, Visual C++. You can download it, too. Or just jump to my GitHub repository.
The code contains #ifdef
s to switch between the original problem and the Hackerrank version.
Enable #ifdef ORIGINAL
to produce the result for the original problem (default setting for most problems).
#include <iostream>
#define ORIGINAL
#ifdef ORIGINAL
int main()
{
unsigned int sum = 0;
// iterate over 3..1000
for (unsigned int a = 3; a <= 1000; a++)
{
unsigned int n_max = (a - 1) / 2;
sum += 2*a*n_max;
}
// print result
std::cout << sum << std::endl;
return 0;
}
#else
#include <deque>
// return (a*b) % modulo
unsigned long long mulmod(unsigned long long a, unsigned long long b, unsigned long long modulo)
{
// (a * b) % modulo = (a % modulo) * (b % modulo) % modulo
a %= modulo;
b %= modulo;
// fast path
if (a <= 0xFFFFFFF && b <= 0xFFFFFFF)
return (a * b) % modulo;
// we might encounter overflows (slow path)
// the number of loops depends on b, therefore try to minimize b
if (b > a)
std::swap(a, b);
// bitwise multiplication
unsigned long long result = 0;
while (a > 0 && b > 0)
{
// b is odd ? a*b = a + a*(b-1)
if (b & 1)
{
result += a;
result %= modulo;
// skip b-- because the bit-shift at the end will remove the lowest bit anyway
}
// b is even ? a*b = (2*a)*(b/2)
a <<= 1;
a %= modulo;
// next bit
b >>= 1;
}
return result;
}
// return (base^exponent) % modulo
unsigned long long powmod(unsigned long long base, unsigned long long exponent, unsigned long long modulo)
{
unsigned long long result = 1;
while (exponent > 0)
{
// fast exponentation:
// odd exponent ? a^b = a*a^(b-1)
if (exponent & 1)
result = mulmod(result, base, modulo);
// even exponent ? a^b = (a*a)^(b/2)
base = mulmod(base, base, modulo);
exponent >>= 1;
}
return result;
}
int main()
{
const unsigned int minA = 1;
const unsigned int Modulo = 1000000007;
std::deque<unsigned int> sums2(minA, 0);
std::deque<unsigned int> sums3(minA, 0);
unsigned int tests = 1;
std::cin >> tests;
while (tests--)
{
unsigned int exponent = 2;
unsigned long long maxA = 1000;
std::cin >> maxA >> exponent;
unsigned long long sum = 0;
if (exponent == 2)
{
// closed formula
{
unsigned __int128 half = maxA / 2;
sum = half * (8*half*half - 3*half - 5) / 3;
if (maxA % 2 == 1)
sum += (maxA*maxA - maxA) % Modulo;
sum += 2; // maxA == 1
sum %= Modulo;
std::cout << sum << std::endl;
continue;
}
sum = sums2.back();
for (auto a = sums2.size(); a <= maxA; a++)
{
unsigned long long A = a; // make sure that a*a is computed in 64 bit to avoid overflows
unsigned int even = (A*A - 2*A) % Modulo;
unsigned int odd = (A*A - A) % Modulo;
// direct evaluation
if (a == 1) // the formulas below fail for a == 1 ...
sum += 2;
else if (a % 2 == 0)
sum += even; // for even numbers
else
sum += odd; // for odd numbers
sum %= Modulo;
sums2.push_back(sum);
}
sum = sums2[maxA];
}
else // exponent = 3
{
sum = sums3.back();
for (auto a = sums3.size(); a <= maxA; a++)
{
unsigned __int128 A = a; // make sure that a*a*a is computed in 128 bit to avoid overflows
unsigned int even = (A*A*A - 2*A) % Modulo;
unsigned int odd = (A*A*A - A) % Modulo;
if (a == 1) // the formulas below fail for a == 1 ...
sum += 0;
else if (a % 2 == 0)
sum += even; // for even numbers
else
sum += odd; // for odd numbers
sum %= Modulo;
sums3.push_back(sum);
}
sum = sums3[maxA];
}
// print result
std::cout << sum << std::endl;
}
return 0;
}
#endif
This solution contains 31 empty lines, 19 comments and 6 preprocessor commands.
Benchmark
The correct solution to the original Project Euler problem was found in less than 0.01 seconds on an Intel® Core™ i7-2600K CPU @ 3.40GHz.
(compiled for x86_64 / Linux, GCC flags: -O3 -march=native -fno-exceptions -fno-rtti -std=gnu++11 -DORIGINAL
)
See here for a comparison of all solutions.
Note: interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without -DORIGINAL
.
Changelog
May 11, 2017 submitted solution
May 24, 2017 added comments
Hackerrank
see https://www.hackerrank.com/contests/projecteuler/challenges/euler120
My code solves 5 out of 12 test cases (score: 26.67%)
I failed 2 test cases due to wrong answers and 5 because of timeouts
Difficulty
Project Euler ranks this problem at 25% (out of 100%).
Hackerrank describes this problem as easy.
Note:
Hackerrank has strict execution time limits (typically 2 seconds for C++ code) and often a much wider input range than the original problem.
In my opinion, Hackerrank's modified problems are usually a lot harder to solve. As a rule thumb: brute-force is rarely an option.
Links
projecteuler.net/thread=120 - the best forum on the subject (note: you have to submit the correct solution first)
Code in various languages:
C# www.mathblog.dk/project-euler-120-maximum-remainder/ (written by Kristian Edlund)
C# github.com/HaochenLiu/My-Project-Euler/blob/master/120.cs (written by Haochen Liu)
Python github.com/nayuki/Project-Euler-solutions/blob/master/python/p120.py (written by Nayuki)
Python github.com/steve98654/ProjectEuler/blob/master/120.py
C++ github.com/Meng-Gen/ProjectEuler/blob/master/120.cc (written by Meng-Gen Tsai)
C++ github.com/roosephu/project-euler/blob/master/120.cpp (written by Yuping Luo)
C github.com/LaurentMazare/ProjectEuler/blob/master/e120.c (written by Laurent Mazare)
C github.com/zmwangx/Project-Euler/blob/master/120/120.c (written by Zhiming Wang)
Java github.com/dcrousso/ProjectEuler/blob/master/PE120.java (written by Devin Rousso)
Java github.com/nayuki/Project-Euler-solutions/blob/master/java/p120.java (written by Nayuki)
Java github.com/thrap/project-euler/blob/master/src/Java/Problem120.java (written by Magnus Solheim Thrap)
Go github.com/frrad/project-euler/blob/master/golang/Problem120.go (written by Frederick Robinson)
Mathematica github.com/nayuki/Project-Euler-solutions/blob/master/mathematica/p120.mathematica (written by Nayuki)
Mathematica github.com/steve98654/ProjectEuler/blob/master/120.nb
Haskell github.com/nayuki/Project-Euler-solutions/blob/master/haskell/p120.hs (written by Nayuki)
Scala github.com/samskivert/euler-scala/blob/master/Euler120.scala (written by Michael Bayne)
Perl github.com/gustafe/projecteuler/blob/master/120-Square-remainders.pl (written by Gustaf Erikson)
Perl github.com/shlomif/project-euler/blob/master/project-euler/120/euler-120.pl (written by Shlomi Fish)
Rust github.com/gifnksm/ProjectEulerRust/blob/master/src/bin/p120.rs
Those links are just an unordered selection of source code I found with a semi-automatic search script on Google/Bing/GitHub/whatever.
You will probably stumble upon better solutions when searching on your own.
Maybe not all linked resources produce the correct result and/or exceed time/memory limits.
Heatmap
Please click on a problem's number to open my solution to that problem:
green | solutions solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too | |
yellow | solutions score less than 100% at Hackerrank (but still solve the original problem easily) | |
gray | problems are already solved but I haven't published my solution yet | |
blue | solutions are relevant for Project Euler only: there wasn't a Hackerrank version of it (at the time I solved it) or it differed too much | |
orange | problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte | |
red | problems are not solved yet but I wrote a simulation to approximate the result or verified at least the given example - usually I sketched a few ideas, too | |
black | problems are solved but access to the solution is blocked for a few days until the next problem is published | |
[new] | the flashing problem is the one I solved most recently |
I stopped working on Project Euler problems around the time they released 617.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |
76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 |
126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 |
176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |
226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 |
251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 |
276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |
301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 |
326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 |
351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 |
376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 |
401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 |
426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 |
451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 |
476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 |
501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 |
526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 |
551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 |
576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 |
601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 |
626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 |
651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 |
676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 |
701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 |
726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 |
751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 |
776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 |
801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 810 | 811 | 812 |
I scored 13526 points (out of 15700 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.
My username at Project Euler is stephanbrumme while it's stbrumme at Hackerrank.
Look at my progress and performance pages to get more details.
Copyright
I hope you enjoy my code and learn something - or give me feedback how I can improve my solutions.
All of my solutions can be used for any purpose and I am in no way liable for any damages caused.
You can even remove my name and claim it's yours. But then you shall burn in hell.
The problems and most of the problems' images were created by Project Euler.
Thanks for all their endless effort !!!
<< problem 119 - Digit power sum | Disc game prize fund - problem 121 >> |