<< problem 412 - Gnomon numbering | Prime connection - problem 425 >> |
Problem 418: Factorisation triples
(see projecteuler.net/problem=418)
Let n be a positive integer. An integer triple (a, b, c) is called a factorisation triple of n if:
1 <= a <= b <= c
a * b * c = n.
Define f(n) to be a + b + c for the factorisation triple (a, b, c) of n which minimises c / a.
One can show that this triple is unique.
For example, f(165) = 19, f(100100) = 142 and f(20!) = 4034872.
Find f(43!).
My Algorithm
Even though 43! is a pretty large number, its factorization is extremely simple: just factorize all numbers 1, 2, 3, ..., 43.
Then add all exponents of their prime factors:
43! = 2^39 * 3^19 * 5^9 * 7^6 * 11^3 * 13^3 * 17^2 * 19^2 * 23 * 29 * 31 * 37 * 41 * 43
The number of divisors is (see en.wikipedia.org/wiki/Divisor_function):
(39 + 1) * (19 + 1) * (9 + 1) * (6 + 1) * (3 + 1) * (3 + 1) * (2 + 1) * (2 + 1) * (1 + 1) * (1 + 1) * (1 + 1) * (1 + 1) * (1 + 1) * (1 + 1)
= 40 * 20 * 10 * 7 * 4 * 4 * 3 * 3 * 2 * 2 * 2 * 2 * 2 * 2
= 516096000
If c / a is minimal then a, b and c should be pretty close to each other.
That means all three variables are approx sqrt[3]{43!} with a < sqrt[3]{43!} and c > sqrt[3]{43!}.
I started with the assumption 0.99 * sqrt[3]{43!} < a < sqrt[3]{43!} and found tons of valid triples.
Even 0.9999 * sqrt[3]{43!} < a < sqrt[3]{43!} and sqrt[3]{43!} < c < 1.0001 * sqrt[3]{43!} is "good" enough.
Thus only about 1000 divisors are left and I can compare them in a brute-force way (see search()
):
- for each a and c compute b = 43! / (a*c) by manipulating the exponents of the prime factors
- if such b exists then check if c / a is smaller than anything seen before
Note
Most of the time is spent in findCandidates()
which extracts these 1000 relevant divisors.
Smaller factorials than 43! need a wider corridor than 0.0001 to find a valid solution and
that's what the second command-line parameter is for: e.g. for 20! you have to enter "20 0.004"
(but even "20 1"
is quite fast).
Interactive test
You can submit your own input to my program and it will be instantly processed at my server:
This is equivalent toecho "20 0.004" | ./418
Output:
Note: the original problem's input 43 0.0002
cannot be entered
because just copying results is a soft skill reserved for idiots.
(this interactive test is still under development, computations will be aborted after one second)
My code
… was written in C++11 and can be compiled with G++, Clang++, Visual C++. You can download it, too. Or just jump to my GitHub repository.
#include <iostream>
#include <vector>
#include <map>
#include <cmath>
// all prime factors of 43!
std::vector<unsigned char> primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43 };
std::vector<unsigned char> factors; // = { 39, 19, 9, 6, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1 };
// store all relevant divisors of 43!
std::map<unsigned long long, std::vector<unsigned char>> candidates;
// fill container "factors" with prime exponents of 43!
void factorizeFactorial(unsigned int factorial)
{
factors.resize(primes.size(), 0);
// each number 2..43
for (unsigned int i = 2; i <= factorial; i++)
{
// find their prime factors ...
auto reduce = i;
for (unsigned int j = 0; j < primes.size(); j++)
{
auto p = primes[j];
// ... and add them
while (reduce % p == 0)
{
factors[j]++;
reduce /= p;
}
}
}
}
// find all divisors close to sqrt3(43!) in a recursive way
void findCandidates(std::vector<unsigned char>& exponents, unsigned int pos,
unsigned long long current, unsigned long long atLeast, unsigned long long atMost)
{
// multiplied all primes ?
if (pos == exponents.size())
{
// must be within range of relevant divisors
if (current < atLeast || current > atMost)
return;
// store it
candidates[current] = exponents;
return;
}
// try all exponents of the current prime
auto maxExponent = exponents[pos];
for (exponents[pos] = 0; exponents[pos] <= maxExponent; exponents[pos]++)
{
if (exponents[pos] > 0)
{
// fast exit if too big
if (current * primes[pos] > atMost)
break;
current *= primes[pos];
}
// go deeper ...
findCandidates(exponents, pos + 1, current, atLeast, atMost);
}
// restore previous value
exponents[pos] = maxExponent;
}
// find a+b+c, where root3 is an approximation of sqrt3(43!)
unsigned long long search(double root3)
{
// a+b+c
unsigned long long result = 0;
// minimize c / a, start with worst case
auto bestRatio = candidates.rbegin()->first / double(candidates.begin()->first);
// the initial numbers probably don't "match"
// a < sqrt3(43!) and c > sqrt3(43!)
auto mid = candidates.lower_bound(root3);
// compare all pairs a,c
for (auto a = candidates.begin(); a != mid; a++)
for (auto c = mid; c != candidates.end(); c++)
{
// too far apart ?
if (a->first * bestRatio < c->first)
break;
// calculate b based on the unused prime exponents
bool isValid = true;
unsigned long long b = 1;
for (unsigned int i = 0; i < primes.size() && isValid; i++)
{
// find "remaining" exponent for each prime
auto used = a->second[i] + c->second[i];
// make sure we don't consume "too many" exponents
isValid = used <= factors[i];
// calculate b
while (used < factors[i])
{
b *= primes[i];
used++;
}
}
// no valid b ?
if (!isValid)
continue;
// verify that a <= b <= c
if (b < a->first || b > c->first)
continue;
// compare ratio against the previous record
auto ratio = c->first / double(a->first);
if (bestRatio > ratio)
{
bestRatio = ratio;
result = a->first + b + c->first;
}
// a,b,c was a valid triple => if c increments then c/a worsens
break;
}
// a+b+c
return result;
}
int main()
{
unsigned int limit = 43;
std::cin >> limit;
// factorize 43!
factorizeFactorial(limit);
// cheating ?! I optimized the search range manually for 43!
double maxRatio = 0.0002;
std::cin >> maxRatio;
auto atLeast = 1 - maxRatio / 2;
auto atMost = 1 + maxRatio / 2;
// approximation of 43!
double factorial = 1;
for (unsigned int i = 2; i <= limit; i++)
factorial *= i;
// a,b,c will be close to sqrt3(43!)
auto root3 = pow(factorial, 1.0/3);
findCandidates(factors, 0, 1, root3 * atLeast, root3 * atMost);
// let's find the best triple !
std::cout << search(root3) << std::endl;
return 0;
}
This solution contains 24 empty lines, 35 comments and 4 preprocessor commands.
Benchmark
The correct solution to the original Project Euler problem was found in 1.0 seconds on an Intel® Core™ i7-2600K CPU @ 3.40GHz.
(compiled for x86_64 / Linux, GCC flags: -O3 -march=native -fno-exceptions -fno-rtti -std=gnu++11 -DORIGINAL
)
See here for a comparison of all solutions.
Note: interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without -DORIGINAL
.
Changelog
October 4, 2017 submitted solution
October 4, 2017 added comments
Difficulty
Project Euler ranks this problem at 40% (out of 100%).
Links
projecteuler.net/thread=418 - the best forum on the subject (note: you have to submit the correct solution first)
Code in various languages:
Python github.com/roosephu/project-euler/blob/master/418.py (written by Yuping Luo)
C++ github.com/evilmucedin/project-euler/blob/master/euler418/euler418.cpp (written by Den Raskovalov)
C++ github.com/roosephu/project-euler/blob/master/418.cpp (written by Yuping Luo)
Java github.com/thrap/project-euler/blob/master/src/Java/Problem418.java (written by Magnus Solheim Thrap)
Haskell github.com/roosephu/project-euler/blob/master/418.hs (written by Yuping Luo)
Those links are just an unordered selection of source code I found with a semi-automatic search script on Google/Bing/GitHub/whatever.
You will probably stumble upon better solutions when searching on your own.
Maybe not all linked resources produce the correct result and/or exceed time/memory limits.
Heatmap
Please click on a problem's number to open my solution to that problem:
green | solutions solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too | |
yellow | solutions score less than 100% at Hackerrank (but still solve the original problem easily) | |
gray | problems are already solved but I haven't published my solution yet | |
blue | solutions are relevant for Project Euler only: there wasn't a Hackerrank version of it (at the time I solved it) or it differed too much | |
orange | problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte | |
red | problems are not solved yet but I wrote a simulation to approximate the result or verified at least the given example - usually I sketched a few ideas, too | |
black | problems are solved but access to the solution is blocked for a few days until the next problem is published | |
[new] | the flashing problem is the one I solved most recently |
I stopped working on Project Euler problems around the time they released 617.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |
76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 |
126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 |
176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |
226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 |
251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 |
276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |
301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 |
326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 |
351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 |
376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 |
401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 |
426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 |
451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 |
476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 |
501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 |
526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 |
551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 |
576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 |
601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 |
626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 |
651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 |
676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 |
701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 |
726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 |
751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 |
776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 |
801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 810 | 811 | 812 | 813 | 814 | 815 | 816 | 817 | 818 | 819 | 820 | 821 | 822 |
I scored 13526 points (out of 15700 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.
My username at Project Euler is stephanbrumme while it's stbrumme at Hackerrank.
Look at my progress and performance pages to get more details.
Copyright
I hope you enjoy my code and learn something - or give me feedback how I can improve my solutions.
All of my solutions can be used for any purpose and I am in no way liable for any damages caused.
You can even remove my name and claim it's yours. But then you shall burn in hell.
The problems and most of the problems' images were created by Project Euler.
Thanks for all their endless effort !!!
<< problem 412 - Gnomon numbering | Prime connection - problem 425 >> |