<< problem 77 - Prime summations | Passcode derivation - problem 79 >> |
Problem 78: Coin partitions
(see projecteuler.net/problem=78)
Let p(n) represent the number of different ways in which n coins can be separated into piles.
For example, five coins can be separated into piles in exactly seven different ways, so p(5)=7.
OOOOO
OOOO O
OOO OO
OOO O O
OO OO O
OO O O O
O O O O O
Find the least value of n for which p(n) is divisible by one million.
My Algorithm
Brute-forcing the solution for small n yielded the sequence:
1,2,3,5,7,11,15,122,30,42,56,77,101,...
I searched the web and found these numbers in OEIS A000041.
After that I read the problem description again and looked up "partition" on Wikipedia: en.wikipedia.org/wiki/Partition_(number_theory)#Recurrence_formula
And found a link to Euler's formula which is based on pentagonal numbers: en.wikipedia.org/wiki/Pentagonal_number_theorem
result(i) = result(pentagonal(+1)) + result(pentagonal(-1))
- result(pentagonal(+2)) - result(pentagonal(-2))
+ result(pentagonal(+3)) + result(pentagonal(-3))
- result(pentagonal(+4)) - result(pentagonal(-4))
...
result(417)
is too big for a 64 bit integer (and there is no solution among the first 416 partitions).
Luckily, we need to find the first number that is divisible by one million, that means where result(x) % 1000000 = 0
.
Hence I store the number of partitions modulo 1000000. Whenever it is zero, my program can abort.
Modifications by HackerRank
The modified problem asks for the number of partitions of an input value (modulo 10^9 - 7).
Results from previous test cases are kept in partitions
to speed up the process.
Interactive test
You can submit your own input to my program and it will be instantly processed at my server:
This live test is based on the Hackerrank problem.
This is equivalent toecho "1 5" | ./78
Output:
(this interactive test is still under development, computations will be aborted after one second)
My code
… was written in C++11 and can be compiled with G++, Clang++, Visual C++. You can download it, too. Or just jump to my GitHub repository.
The code contains #ifdef
s to switch between the original problem and the Hackerrank version.
Enable #ifdef ORIGINAL
to produce the result for the original problem (default setting for most problems).
#include <iostream>
#include <vector>
int main()
{
// store result (modulo 10^6 or 10^9 + 7)
std::vector<unsigned long long> partitions;
// degenerated case, there's one partition for an empty pile
partitions.push_back(1);
//#define ORIGINAL
#ifdef ORIGINAL
const long long modulo = 1000000; // 10^6
#else
const long long modulo = 1000000007; // 10^9 + 7
unsigned int tests = 1;
std::cin >> tests;
while (tests--)
#endif
{
unsigned int limit = 100000; // the solution is < 100000, program ab
#ifndef ORIGINAL
std::cin >> limit;
#endif
// fill cache
for (unsigned int n = partitions.size(); n <= limit; n++)
{
// sum according to Euler's formula
long long sum = 0;
// all pentagonal numbers where pentagonal(i) <= n
for (unsigned int i = 0; ; i++) // abort inside loop
{
// generate alternating numbers +1,-1,+2,-2,+3,-3,...
int alternate = 1 + (i / 2); // generate the digit 1,1,2,2,3,3,...
if (i % 2 == 1)
alternate = -alternate; // flip the sign for every second number
// pentagonal index, "how far we go back" in partitions[]
unsigned int offset = alternate * (3 * alternate - 1) / 2;
// can't go back that far ? (array index would be negative)
if (n < offset)
break;
// add two terms, subtract two terms, add two terms, subtract two terms, ...
if (i % 4 < 2)
sum += partitions[n - offset]; // i % 4 = { 0, 1 }
else
sum -= partitions[n - offset]; // i % 4 = { 2, 3 }
// only the last digits are relevant
sum %= modulo;
}
// note: sum can be temporarily negative
if (sum < 0)
sum += modulo;
#ifdef ORIGINAL
// "divisible by one million" => sum % 1000000 == 0
// last 6 digits (modulo was 10^6) are zero
if (sum == 0)
break;
#endif
partitions.push_back(sum);
}
// print (cached) result
#ifdef ORIGINAL
std::cout << partitions.size() << std::endl;
#else
std::cout << partitions[limit] << std::endl;
#endif
}
return 0;
}
This solution contains 15 empty lines, 15 comments and 12 preprocessor commands.
Benchmark
The correct solution to the original Project Euler problem was found in 0.10 seconds on an Intel® Core™ i7-2600K CPU @ 3.40GHz.
(compiled for x86_64 / Linux, GCC flags: -O3 -march=native -fno-exceptions -fno-rtti -std=gnu++11 -DORIGINAL
)
See here for a comparison of all solutions.
Note: interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without -DORIGINAL
.
Changelog
March 16, 2017 submitted solution
May 3, 2017 added comments
Hackerrank
see https://www.hackerrank.com/contests/projecteuler/challenges/euler078
My code solves 8 out of 8 test cases (score: 100%)
Difficulty
Project Euler ranks this problem at 30% (out of 100%).
Hackerrank describes this problem as medium.
Note:
Hackerrank has strict execution time limits (typically 2 seconds for C++ code) and often a much wider input range than the original problem.
In my opinion, Hackerrank's modified problems are usually a lot harder to solve. As a rule thumb: brute-force is rarely an option.
Links
projecteuler.net/thread=78 - the best forum on the subject (note: you have to submit the correct solution first)
Code in various languages:
C# www.mathblog.dk/project-euler-78-coin-piles/ (written by Kristian Edlund)
Python github.com/hughdbrown/Project-Euler/blob/master/euler-078.py (written by Hugh Brown)
Python github.com/nayuki/Project-Euler-solutions/blob/master/python/p078.py (written by Nayuki)
C++ github.com/HaochenLiu/My-Project-Euler/blob/master/078.cpp (written by Haochen Liu)
C++ github.com/Meng-Gen/ProjectEuler/blob/master/78.cc (written by Meng-Gen Tsai)
C++ github.com/zmwangx/Project-Euler/blob/master/078/078.cpp (written by Zhiming Wang)
Java github.com/dcrousso/ProjectEuler/blob/master/PE078.java (written by Devin Rousso)
Java github.com/nayuki/Project-Euler-solutions/blob/master/java/p078.java (written by Nayuki)
Java github.com/thrap/project-euler/blob/master/src/Java/Problem78.java (written by Magnus Solheim Thrap)
Go github.com/frrad/project-euler/blob/master/golang/Problem078.go (written by Frederick Robinson)
Mathematica github.com/steve98654/ProjectEuler/blob/master/078.nb
Haskell github.com/roosephu/project-euler/blob/master/78.hs (written by Yuping Luo)
Clojure github.com/rm-hull/project-euler/blob/master/src/euler078.clj (written by Richard Hull)
Scala github.com/samskivert/euler-scala/blob/master/Euler078.scala (written by Michael Bayne)
Perl github.com/gustafe/projecteuler/blob/master/078-Coin-partitions.pl (written by Gustaf Erikson)
Rust github.com/gifnksm/ProjectEulerRust/blob/master/src/bin/p078.rs
Those links are just an unordered selection of source code I found with a semi-automatic search script on Google/Bing/GitHub/whatever.
You will probably stumble upon better solutions when searching on your own.
Maybe not all linked resources produce the correct result and/or exceed time/memory limits.
Heatmap
Please click on a problem's number to open my solution to that problem:
green | solutions solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too | |
yellow | solutions score less than 100% at Hackerrank (but still solve the original problem easily) | |
gray | problems are already solved but I haven't published my solution yet | |
blue | solutions are relevant for Project Euler only: there wasn't a Hackerrank version of it (at the time I solved it) or it differed too much | |
orange | problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte | |
red | problems are not solved yet but I wrote a simulation to approximate the result or verified at least the given example - usually I sketched a few ideas, too | |
black | problems are solved but access to the solution is blocked for a few days until the next problem is published | |
[new] | the flashing problem is the one I solved most recently |
I stopped working on Project Euler problems around the time they released 617.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |
76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 |
126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 |
176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |
226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 |
251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 |
276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |
301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 |
326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 |
351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 |
376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 |
401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 |
426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 |
451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 |
476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 |
501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 |
526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 |
551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 |
576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 |
601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 |
626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 |
651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 |
676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 |
701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 |
726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 |
751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 |
776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 |
801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 810 | 811 | 812 |
I scored 13526 points (out of 15700 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.
My username at Project Euler is stephanbrumme while it's stbrumme at Hackerrank.
Look at my progress and performance pages to get more details.
Copyright
I hope you enjoy my code and learn something - or give me feedback how I can improve my solutions.
All of my solutions can be used for any purpose and I am in no way liable for any damages caused.
You can even remove my name and claim it's yours. But then you shall burn in hell.
The problems and most of the problems' images were created by Project Euler.
Thanks for all their endless effort !!!
<< problem 77 - Prime summations | Passcode derivation - problem 79 >> |