<< problem 375 - Minimum of subsequences | Maximum length of an antichain - problem 386 >> |
Problem 381: (prime-k) factorial
(see projecteuler.net/problem=381)
For a prime p let S(p) = (sum{(p-k)!}) mod(p) for 1 <= k <= 5.
For example, if p=7,
(7-1)! + (7-2)! + (7-3)! + (7-4)! + (7-5)! = 6! + 5! + 4! + 3! + 2! = 720+120+24+6+2 = 872.
As 872 mod(7) = 4, S(7) = 4.
It can be verified that sum{S(p)} = 480 for 5 <= p < 100.
Find sum{S(p)} for 5 <= p < 10^8.
My Algorithm
The standard prime sieve from my toolbox returns all primes up to 10^8 in about 0.2 seconds.
Finding the factorials mod some value can be solved for small values with naive()
- and as always, it's too slow.
Browsing the Wikipedia I came across Wilson's theorem (see en.wikipedia.org/wiki/Wilson's_theorem):
(n - 1)! == -1 (mod n) iff n is a prime number
Since n - 1 == -1 (mod n) I don't need negative numbers:
(n - 1)! == n - 1 (mod n)
Now that I can directly solve (n - 1)! I need a way to solve (n - 2)!, (n - 3)!, ...:
n! = (n - 1)! * n
dfrac{n!}{n} = (n - 1)!
Unfortunately those equations only partially transfer from "normal" arithmetic to modular arithmetic because it's missing the division.
But division can be emulated by multiplication:
dfrac{a}{a} = 1
a * a^-1 = 1
In this case a^-1 is the inverse of a. In modular arithmetic you can find the modular inverse a^-1 of a as well with certain algorithms.
My first approach was based on Fermat's Little Theorem (see en.wikipedia.org/wiki/Fermat's_little_theorem):
a^p == a mod p
a^(p-1) == 1 mod p
a^(p-2) == a^-1 mod p
The left side is simply powmod(a, p - 2, p)
.
My second approach turned out to be 4x faster (Extended Euclidean algorithm, see en.wikipedia.org/wiki/Extended_Euclidean_algorithm):
I solve gcd(a,b) = ax + by that means if a and b are coprime then gcd(a,b) == 1 which means 1 = ax + by:
when I set b=p and apply the modulo to both sides:
1 mod p = (ax + py) mod p
1 mod p == 1 and py is a multiple of p:
1 = ax mod p
→ therefore x must be the modular inverse of a mod p
The current version of my program can compute any factorial (p - k)! mod p.
For performance reasons it only computes (p - 5)!. Then (p - 4)! mod p = ((p - 4) * (p - 5)!) mod p.
After repeating the same for p - 3 and p - 2 I don't need to do it for p - 1 because I already know that (p - 1)! mod p == p - 1.
Adding those 5 terms is bigger than p, so I need to apply mod p once again.
Interactive test
You can submit your own input to my program and it will be instantly processed at my server:
This is equivalent toecho 100 | ./381
Output:
Note: the original problem's input 100000000
cannot be entered
because just copying results is a soft skill reserved for idiots.
(this interactive test is still under development, computations will be aborted after one second)
My code
… was written in C++11 and can be compiled with G++, Clang++, Visual C++. You can download it, too. Or just jump to my GitHub repository.
#include <iostream>
#include <vector>
// ---------- standard prime sieve from my toolbox ----------
// odd prime numbers are marked as "true" in a bitvector
std::vector<bool> sieve;
// return true, if x is a prime number
bool isPrime(unsigned int x)
{
// handle even numbers
if ((x & 1) == 0)
return x == 2;
// lookup for odd numbers
return sieve[x >> 1];
}
// find all prime numbers from 2 to size
void fillSieve(unsigned int size)
{
// store only odd numbers
const unsigned int half = (size >> 1) + 1;
// allocate memory
sieve.resize(half, true);
// 1 is not a prime number
sieve[0] = false;
// process all relevant prime factors
for (unsigned int i = 1; 2*i*i < half; i++)
// do we have a prime factor ?
if (sieve[i])
{
// mark all its multiples as false
unsigned int current = 3*i+1;
while (current < half)
{
sieve[current] = false;
current += 2*i+1;
}
}
}
// ---------- problem specific code ----------
// compute n! % modulo (slow and obvious algorithm)
unsigned int naive(unsigned int n, unsigned int modulo)
{
unsigned long long result = 1;
while (n > 1)
{
result *= n;
result %= modulo;
n--;
}
return (unsigned int)result;
}
// return (base^exponent) % modulo for 32-bit values, no need for mulmod
// copied from my toolbox, not needed anymore because replaced by the next function
unsigned int powmod(unsigned int base, unsigned int exponent, unsigned int modulo)
{
unsigned int result = 1;
while (exponent > 0)
{
// fast exponentation:
// odd exponent ? a^b = a*a^(b-1)
if (exponent & 1)
result = (result * (unsigned long long)base) % modulo;
// even exponent ? a^b = (a*a)^(b/2)
base = (base * (unsigned long long)base) % modulo;
exponent >>= 1;
}
return result;
}
// extended Euclidean algorithm, see also en.wikipedia.org/wiki/Extended_Euclidean_algorithm
// simplified version of ExtendedGcd from problem 134
unsigned int modularInverse(unsigned int a, unsigned int modulo)
{
// pretty much the same code can be found on https://rosettacode.org/wiki/Modular_inverse
auto originalModulo = modulo;
// note: s and t can be negative inside the loop
int s = 0;
int t = 1;
while (a > 1)
{
auto tmp = modulo;
auto quotient = a / modulo;
modulo = a % modulo;
a = tmp;
auto tmp2 = s;
s = t - quotient * s;
t = tmp2;
}
// avoid negative result
return t < 0 ? t + originalModulo : t;
}
// return n! % modulo (only if modulo is prime)
// en.wikipedia.org/wiki/Wilson's_theorem
unsigned int facmod(unsigned int n, unsigned int modulo)
{
// if n >= modulo then n! is a multiple of modulo
if (n >= modulo)
return 0;
// for small n the naive algorithm can be faster
// Wilson's Theorem is: (n-1)! == -1 (mod modulo)
// avoid negative numbers: -1 == modulo - 1 (mod modulo)
unsigned long long result = modulo - 1;
// (p - i)! = p! / (p-1) / (p-2) / (p-3) / ... / (p - i + 1)
// = p! * (p-1)^1 * (p-2)^1 * (p-3)^-1 * ... * (p - i + 1)^-1
// with modular arithmetic the inverse of a is a^-1
// where a^-1 can be found with Fermat's Little Theorem
for (auto i = modulo - 1; i > n; i--)
{
// my first approach
// Fermat's Little Theorem: a^p == a mod p
// divide both sides by a: a^(p-1) == 1 mod p
// once more: a^(p-2) == a^-1 mod p
// where a^-1 is the inverse of a => equal to a^(p-2) % p
// (in my code: i=a and modulo=p)
// https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
//result *= powmod(i, modulo - 2, modulo);
//result %= modulo;
// my second approach (4x faster):
// Extended Euclidean algorithm https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
// solve gcd(a,b) = ax + by
// if a and b are coprime then gcd(a,b) == 1 which means:
// 1 = ax + by
// when I set b=p and apply the modulo to both sides:
// 1 mod p = (ax + py) mod p
// 1 mod p == 1 and py is a multiple of p:
// 1 = ax mod p
// therefore x must be the inverse of a modulo p
result *= modularInverse(i, modulo);
result %= modulo;
}
return (unsigned int)result;
}
int main()
{
unsigned int limit = 100000000;
std::cin >> limit;
// generate prime numbers
fillSieve(limit);
// iterate over all prime numbers
unsigned long long sum = 0;
for (unsigned int i = 5; i < limit; i++)
if (isPrime(i))
{
unsigned long long minus5 = facmod(i - 5, i);
// facmod is "expensive", therefore re-use the result:
// facmod(i - 4, i) = facmod(i - 5, i) * (i - 4) % i
unsigned long long minus4 = (minus5 * (i - 4)) % i; // same as facmod(i - 4, i)
// and the same trick for the remaining values
unsigned long long minus3 = (minus4 * (i - 3)) % i; // same as facmod(i - 3, i)
unsigned long long minus2 = (minus3 * (i - 2)) % i; // same as facmod(i - 2, i)
unsigned long long minus1 = i - 1; // again Wilson's theorem
sum += (minus1 + minus2 + minus3 + minus4 + minus5) % i;
// note:
// of course I could customize facmod() to emit the relevant values minus1, minus2, ..., minus5
// (because they are generated internally) but I wanted it to keep the code simple in case I need it for other problems
}
// display result
std::cout << sum << std::endl;
return 0;
}
This solution contains 27 empty lines, 62 comments and 2 preprocessor commands.
Benchmark
The correct solution to the original Project Euler problem was found in 1.2 seconds on an Intel® Core™ i7-2600K CPU @ 3.40GHz.
Peak memory usage was about 8 MByte.
(compiled for x86_64 / Linux, GCC flags: -O3 -march=native -fno-exceptions -fno-rtti -std=gnu++11 -DORIGINAL
)
See here for a comparison of all solutions.
Note: interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without -DORIGINAL
.
Changelog
August 20, 2017 submitted solution
August 20, 2017 added comments
Difficulty
Project Euler ranks this problem at 15% (out of 100%).
Links
projecteuler.net/thread=381 - the best forum on the subject (note: you have to submit the correct solution first)
Code in various languages:
Python github.com/nayuki/Project-Euler-solutions/blob/master/python/p381.py (written by Nayuki)
Python github.com/sefakilic/euler/blob/master/python/euler381.py (written by Sefa Kilic)
Python github.com/steve98654/ProjectEuler/blob/master/381.py
C++ github.com/Meng-Gen/ProjectEuler/blob/master/381.cc (written by Meng-Gen Tsai)
C++ github.com/smacke/project-euler/blob/master/cpp/381.cpp (written by Stephen Macke)
C++ github.com/zmwangx/Project-Euler/blob/master/381/381.cpp (written by Zhiming Wang)
Java github.com/nayuki/Project-Euler-solutions/blob/master/java/p381.java (written by Nayuki)
Go github.com/frrad/project-euler/blob/master/golang/Problem381.go (written by Frederick Robinson)
Mathematica github.com/nayuki/Project-Euler-solutions/blob/master/mathematica/p381.mathematica (written by Nayuki)
Mathematica github.com/steve98654/ProjectEuler/blob/master/381.nb
Perl github.com/gustafe/projecteuler/blob/master/381-prime-k-factorial.pl (written by Gustaf Erikson)
Those links are just an unordered selection of source code I found with a semi-automatic search script on Google/Bing/GitHub/whatever.
You will probably stumble upon better solutions when searching on your own.
Maybe not all linked resources produce the correct result and/or exceed time/memory limits.
Heatmap
Please click on a problem's number to open my solution to that problem:
green | solutions solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too | |
yellow | solutions score less than 100% at Hackerrank (but still solve the original problem easily) | |
gray | problems are already solved but I haven't published my solution yet | |
blue | solutions are relevant for Project Euler only: there wasn't a Hackerrank version of it (at the time I solved it) or it differed too much | |
orange | problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte | |
red | problems are not solved yet but I wrote a simulation to approximate the result or verified at least the given example - usually I sketched a few ideas, too | |
black | problems are solved but access to the solution is blocked for a few days until the next problem is published | |
[new] | the flashing problem is the one I solved most recently |
I stopped working on Project Euler problems around the time they released 617.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |
76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 |
126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 |
176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |
226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 |
251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 |
276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |
301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 |
326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 |
351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 |
376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 |
401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 |
426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 |
451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 |
476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 |
501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 |
526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 |
551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 |
576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 |
601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 |
626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 |
651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 |
676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 |
701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 |
726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 |
751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 |
776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 |
801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 810 | 811 | 812 | 813 | 814 | 815 | 816 | 817 | 818 | 819 |
I scored 13526 points (out of 15700 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.
My username at Project Euler is stephanbrumme while it's stbrumme at Hackerrank.
Look at my progress and performance pages to get more details.
Copyright
I hope you enjoy my code and learn something - or give me feedback how I can improve my solutions.
All of my solutions can be used for any purpose and I am in no way liable for any damages caused.
You can even remove my name and claim it's yours. But then you shall burn in hell.
The problems and most of the problems' images were created by Project Euler.
Thanks for all their endless effort !!!
<< problem 375 - Minimum of subsequences | Maximum length of an antichain - problem 386 >> |