<< problem 14 - Longest Collatz sequence Power digit sum - problem 16 >>

# Problem 15: Lattice paths

Starting in the top left corner of a 2x2 grid, and only being able to move to the right and down,
there are exactly 6 routes to the bottom right corner.

How many such routes are there through a 20x20 grid?

# My Algorithm

Each grid consists of (width+1)*(height+1) points. The grid in the problem statement has (2+1)*(2+1)=9 points.
I chose my coordinates to be [0][0] in the top left corner and [width][height] in the bottom right corner.

For each point in a grid, the number of routes from the current point to the lower right corner
is the sum of all routes when going right plus all routes when going down:
grid[x][y] = grid[x+1][y] + grid[x][y+1];

There is a single route from the lower right corner to itself ("stay where you are"):
grid[width][height] = 1;

Now I perform a breadth-first search (en.wikipedia.org/wiki/Breadth-first_search) from the lower-right corner to the upper-left corner.
A queue named next contains the coordinates of the next points to analyze - initially it holds the point above the lower-right corner
and the point to the left of the lower-right corner.

A loop processes each point in next:
1. If this point was already processed, skip it
2. If it is possible to move right then get the number of routes stored in grid[x+1][y]
3. If it is possible to move down then get the number of routes stored in grid[x][y+1]
4. Write the sum of step 2 and 3 to grid[x][y], potentially avoid overflow (see Hackerrank modification)
5. If there is a left neighbor, enqueue it in next
6. If there is a neighbor above, enqueue it in next

Finally we have the result in grid[0][0].

## Alternative Approaches

I later found a posting on the internet that the result is

dfrac{(width + height)!}{width! height!}

but I'm not a math guy, I'm a programmer ...
however, the best explanation for that formula is as follows and unfortunately, it's about bits :-) :

If we take any route through the grid then a decision has to be made at each point: walk to the right or walk down.
That's similar to a binary number where each bit can be either 0 or 1. Let's say 0 means "right" and 1 means "down".

Then we have to make width + height decisions: exactly width times we have to go right and exactly height times we have to go down.
In our imaginary binary number, there are width + height bits with height times 0s and width times 1s.

All permutations of these bits are valid routes in the grid.

And as turns out, there are dfrac{(width + height)!}{width! height!} permutations, see en.wikipedia.org/wiki/Permutation

## Modifications by HackerRank

The result should be printed mod (10^9 + 7)

# Interactive test

You can submit your own input to my program and it will be instantly processed at my server:

Number of test cases (1-5):

Input data (separated by spaces or newlines):

This is equivalent to
echo "1 2 2" | ./15

Output:

(this interactive test is still under development, computations will be aborted after one second)

# My code

… was written in C++11 and can be compiled with G++, Clang++, Visual C++. You can download it, too. Or just jump to my GitHub repository.

The code contains #ifdefs to switch between the original problem and the Hackerrank version.
Enable #ifdef ORIGINAL to produce the result for the original problem (default setting for most problems).

       #include <vector>
#include <deque>
#include <utility>
#include <iostream>

int main()
{
unsigned int tests;
std::cin >> tests;
while (tests--)
{
unsigned int width, height;
std::cin >> width >> height;

// create a 2D array which contains the number of paths
// from the current lattice point to the lower-right corner
// there are (width + 1) * (height + 1) such points
// for the original problem, i.e. 21x21 numbers must be found
const unsigned long long Unknown = 0;
std::vector<std::vector<unsigned long long>> grid(width + 1);
for (auto& column : grid)
column.resize(height + 1, Unknown);

// one route if we are already at the goal
grid[width][height] = 1;

// enqueue the next unprocessed lattice points: left and upper neighbor of the lower-right corner
std::deque<std::pair<unsigned int, unsigned int>> next;
next.push_back(std::make_pair(width - 1, height));
next.push_back(std::make_pair(width, height - 1));

// as long as there are unprocessed points
while (!next.empty())
{
// get next point
auto current = next.front();
next.pop_front();

// I prefer names which are easier to read ...
auto x = current.first;
auto y = current.second;

if (grid[x][y] != Unknown)
continue;

// sum of all path when going right plus when going down
unsigned long long routes = 0;
if (x < width)  // can go right ?
routes += grid[x + 1][y];
if (y < height) // can go down ?
routes += grid[x][y + 1];

#define ORIGINAL
#ifndef ORIGINAL
routes %= 1000000007; // Hackerrank wants the result MOD 10^9 + 7
#endif
// solved number for current lattice point
grid[x][y] = routes;

// add left and upper neighbors for further processing
if (x > 0)
next.push_back(std::make_pair(x - 1, y));
if (y > 0)
next.push_back(std::make_pair(x, y - 1));
}

// we are done !
std::cout << grid[0][0] << std::endl;
}
return 0;
}


This solution contains 11 empty lines, 14 comments and 7 preprocessor commands.

# Benchmark

The correct solution to the original Project Euler problem was found in less than 0.01 seconds on an Intel® Core™ i7-2600K CPU @ 3.40GHz.
(compiled for x86_64 / Linux, GCC flags: -O3 -march=native -fno-exceptions -fno-rtti -std=gnu++11 -DORIGINAL)

See here for a comparison of all solutions.

Note: interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without -DORIGINAL.

# Changelog

February 23, 2017 submitted solution

# Hackerrank

My code solves 11 out of 11 test cases (score: 100%)

# Difficulty

Project Euler ranks this problem at 5% (out of 100%).

Hackerrank describes this problem as easy.

Note:
Hackerrank has strict execution time limits (typically 2 seconds for C++ code) and often a much wider input range than the original problem.
In my opinion, Hackerrank's modified problems are usually a lot harder to solve. As a rule thumb: brute-force is rarely an option.

# Heatmap

Please click on a problem's number to open my solution to that problem:

 green solutions solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too yellow solutions score less than 100% at Hackerrank (but still solve the original problem easily) gray problems are already solved but I haven't published my solution yet blue solutions are relevant for Project Euler only: there wasn't a Hackerrank version of it (at the time I solved it) or it differed too much orange problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte red problems are not solved yet but I wrote a simulation to approximate the result or verified at least the given example - usually I sketched a few ideas, too black problems are solved but access to the solution is blocked for a few days until the next problem is published [new] the flashing problem is the one I solved most recently

I stopped working on Project Euler problems around the time they released 617.
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
 801 802 803 804 805 806 807
The 310 solved problems (that's level 12) had an average difficulty of 32.6% at Project Euler and
I scored 13526 points (out of 15700 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.

My username at Project Euler is stephanbrumme while it's stbrumme at Hackerrank.

Look at my progress and performance pages to get more details.

 << problem 14 - Longest Collatz sequence Power digit sum - problem 16 >>
more about me can be found on my homepage, especially in my coding blog.
some names mentioned on this site may be trademarks of their respective owners.
thanks to the KaTeX team for their great typesetting library !