Problem 155: Counting Capacitor Circuits

(see projecteuler.net/problem=155)

An electric circuit uses exclusively identical capacitors of the same value C.
The capacitors can be connected in series or in parallel to form sub-units, which can then be connected in series or in parallel
with other capacitors or other sub-units to form larger sub-units, and so on up to a final circuit.

Using this simple procedure and up to n identical capacitors, we can make circuits having a range of different total capacitances.
For example, using up to n=3 capacitors of 60 \mu F each, we can obtain the following 7 distinct total capacitance values:

capacitors

If we denote by D(n) the number of distinct total capacitance values we can obtain when using up to n equal-valued capacitors
and the simple procedure described above, we have: D(1)=1, D(2)=3, D(3)=7 ...

Find D(18).

Reminder : When connecting capacitors C_1, C_2 etc in parallel, the total capacitance is C_T = C_1 + C_2 + ...,
whereas when connecting them in series, the overall capacitance is given by: dfrac{1}{C_T} = dfrac{1}{C_1} = dfrac{1}{C_2} + ...

My Algorithm

Each large circuit can be subdivided into two smaller circuits that are either connected in parallel or in series.
There are sometimes multiple ways to subdivide a circuit - but all result in the same total capacitance.
The top-most example can be split into 2 plus 1 or 1 plus 2 capacitors. When connected in parallel, I always get 120 + 60 = 60 + 120 = 180.
Of course that's a very basic example because both combinations are based on parallel connections.

The idea is as follows:

I was afraid of nasty rounding errors and wrote a class Fraction to be able to handle connections in series
(because of the heavy use of divisions in dfrac{1}{C_c} = dfrac{1}{C_a} = dfrac{1}{C_b}).

The numerator and/or denominator sometimes became pretty huge and after reading the problem statement multiple times
I realized that the actual rating of a single capacitor doesn't matter:
the example mentions 60 \mu F but that Farad value is just arbitrary. The number of networks of capacitors with 1 F will be the same since
I don't have to print the capacitances - only count how many different I can find.
With 60 \mu F I had tons of overflows, even with long long, but 1 F is perfectly fine with my Fraction class even when
relying on the slightly faster unsigned short (→ 20% performance boost).

Alternative Approaches

The series can be found in oeis.org/A153588 .

Modifications by HackerRank

My program is a little bit too slow for the last test case (probably misses the deadline just by a few milliseconds).
It's strange that even the Hackerrank author suggests pre-computing the result to match the 2 seconds time limit.

Note

The class Fraction was added to my toolbox, too.

A significant part of my code takes care that all solutions/capacitances are unique.
The std::set container offers that "for free": yes, you don't need to write any code - unlike I did - but std::set is much slower, too.
The problem is solved roughly five times faster when #define FAST is enabled (→ std::vector instead of std::set).
It's actually pretty nice how much code is identical for both containers: aside from push_back() vs. insert() there are no additional differences.
There is also a significant memory overhead of set::set: it consumes about 200% more memory even though it only stores 50% of the values.

Even with all these optimizations: my solution is still in the top 10 of the "most expensive solutions".
And I have to admit: some parts of my code look ugly now - or better said: hardly comprehensible ...

Interactive test

You can submit your own input to my program and it will be instantly processed at my server:

Input data (separated by spaces or newlines):

This is equivalent to
echo 3 | ./155

Output:

(please click 'Go !')

Note: the original problem's input 18 cannot be entered
because just copying results is a soft skill reserved for idiots.

(this interactive test is still under development, computations will be aborted after one second)

My code

… was written in C++11 and can be compiled with G++, Clang++, Visual C++. You can download it, too. Or just jump to my GitHub repository.

#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
 
// use std::vector instead of std::set
#define FAST
 
// ---------- code from my toolbox ----------
 
// simple class to representation a fraction
// note: no checks for a zero denominator
// signs are not normalized
struct Fraction
{
// change to long long if you need to support larger values
typedef unsigned short T;
 
// numerator
T num;
// denominator
T den;
 
Fraction(T numerator, T denominator = 1)
: num(numerator), den(denominator)
{}
 
// add
Fraction operator+(const Fraction& other) const
{
// n1/d1 + n2/d2 = (n1*d2 + n2*d1) / d1*d2
return { T(num * other.den + other.num * den), T(den * other.den) };
}
 
// sort
bool operator< (const Fraction& other) const
{
// n1/d1 < n2/d2 => n1*d2 < n2*d2
return num * other.den < other.num * den;
}
// compare
bool operator==(const Fraction& other) const
{
// n1/d1 < n2/d2 => n1*d2 < n2*d2
return num * other.den == other.num * den;
}
 
// return Fraction with swapped numerator and denominator
Fraction inverse() const
{
return { den, num };
}
};
 
// ---------- problem-specific code ----------
 
int main()
{
unsigned int limit = 18;
std::cin >> limit;
 
// capacitance of a single element (1 F)
Fraction Capacitance = 1;
 
// store all circuits
#ifdef FAST
std::vector<std::vector<Fraction>> circuits;
#else
std::vector<std::set<Fraction>> circuits;
#endif
circuits.resize(limit + 1);
 
// only one basic circuit at level 1 (I use 1F instead of 60uF but the exact value is irrelevant)
circuits[1] = { Capacitance };
 
// find all circuits consisting of 2,3,4, ... 18 elements
for (unsigned int sizeC = 2; sizeC <= limit; sizeC++)
{
// split into "sub-circuits" A and B where size(A) <= size(B)
for (unsigned int sizeA = 1; sizeA <= sizeC / 2; sizeA++)
{
// remaining circuits
auto sizeB = sizeC - sizeA;
 
// create all combinations
for (auto circuitA : circuits[sizeA])
for (auto circuitB : circuits[sizeB])
{
// serial connection
// c = a + b
auto serial = circuitA + circuitB;
#ifdef FAST
circuits[sizeC].push_back(serial);
#else
circuits[sizeC].insert(serial);
#endif
 
// parallel connection
// 1/c = 1/a + 1/b
// invC = invA + invB where invC = 1/c and invA = 1/a and invB = 1/b
auto parallel = (circuitA.inverse() + circuitB.inverse()).inverse();
#ifdef FAST
circuits[sizeC].push_back(parallel);
#else
circuits[sizeC].insert(parallel);
#endif
}
}
 
#ifdef FAST
// remove duplicates
std::sort(circuits[sizeC].begin(), circuits[sizeC].end());
auto garbage = std::unique(circuits[sizeC].begin(), circuits[sizeC].end());
circuits[sizeC].erase(garbage, circuits[sizeC].end());
#endif
}
 
// merge all circuits
std::vector<Fraction> all;
#ifdef FAST
// little trick to keep memory usage low: move the largest vector's content instead of copying
all = std::move(circuits[limit]);
limit--;
#endif
// copy all capacitances
for (unsigned int i = 1; i <= limit; i++)
all.insert(all.end(), circuits[i].begin(), circuits[i].end());
 
// and remove duplicates
std::sort(all.begin(), all.end());
auto garbage = std::unique(all.begin(), all.end());
// count unique fractions
auto numUnique = std::distance(all.begin(), garbage);
std::cout << numUnique << std::endl;
return 0;
}

This solution contains 19 empty lines, 34 comments and 18 preprocessor commands.

Benchmark

The correct solution to the original Project Euler problem was found in 2.1 seconds on an Intel® Core™ i7-2600K CPU @ 3.40GHz.
Peak memory usage was about 106 MByte.

(compiled for x86_64 / Linux, GCC flags: -O3 -march=native -fno-exceptions -fno-rtti -std=gnu++11 -DORIGINAL)

See here for a comparison of all solutions.

Note: interactive tests run on a weaker (=slower) computer. Some interactive tests are compiled without -DORIGINAL.

Changelog

September 15, 2017 submitted solution
September 15, 2017 added comments

Hackerrank

see https://www.hackerrank.com/contests/projecteuler/challenges/euler155

My code solves 17 out of 18 test cases (score: 94.12%)

I failed 0 test cases due to wrong answers and 1 because of timeouts

Difficulty

60% Project Euler ranks this problem at 60% (out of 100%).

Hackerrank describes this problem as easy.

Note:
Hackerrank has strict execution time limits (typically 2 seconds for C++ code) and often a much wider input range than the original problem.
In my opinion, Hackerrank's modified problems are usually a lot harder to solve. As a rule thumb: brute-force is rarely an option.

Heatmap

Please click on a problem's number to open my solution to that problem:

green   solutions solve the original Project Euler problem and have a perfect score of 100% at Hackerrank, too
yellow solutions score less than 100% at Hackerrank (but still solve the original problem easily)
gray problems are already solved but I haven't published my solution yet
blue solutions are relevant for Project Euler only: there wasn't a Hackerrank version of it (at the time I solved it) or it differed too much
orange problems are solved but exceed the time limit of one minute or the memory limit of 256 MByte
red problems are not solved yet but I wrote a simulation to approximate the result or verified at least the given example - usually I sketched a few ideas, too
black problems are solved but access to the solution is blocked for a few days until the next problem is published
[new] the flashing problem is the one I solved most recently

I stopped working on Project Euler problems around the time they released 617.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
The 310 solved problems (that's level 12) had an average difficulty of 32.6% at Project Euler and
I scored 13526 points (out of 15700 possible points, top rank was 17 out of ≈60000 in August 2017) at Hackerrank's Project Euler+.

My username at Project Euler is stephanbrumme while it's stbrumme at Hackerrank.

Look at my progress and performance pages to get more details.

more about me can be found on my homepage, especially in my coding blog.
some names mentioned on this site may be trademarks of their respective owners.
thanks to the KaTeX team for their great typesetting library !